Limits on information transduction through amplitude and frequency regulation of transcription factor activity

Signaling pathways often transmit multiple signals through a single shared transcription factor (TF) and encode signal information by differentially regulating TF dynamics. However, signal information will be lost unless it can be reliably decoded by downstream genes. To understand the limits on dynamic information transduction, we apply information theory to quantify how much gene expression information the yeast TF Msn2 can transduce to target genes in the amplitude or frequency of its activation dynamics. We find that although the amount of information transmitted by Msn2 to single target genes is limited, information transduction can be increased by modulating promoter cis-elements or by integrating information from multiple genes. By correcting for extrinsic noise, we estimate an upper bound on information transduction. Overall, we find that information transduction through amplitude and frequency regulation of Msn2 is limited to error-free transduction of signal identity, but not signal intensity information. DOI: http://dx.doi.org/10.7554/eLife.06559.001

[1]  Ido Golding,et al.  Genetic Determinants and Cellular Constraints in Noisy Gene Expression , 2013, Science.

[2]  C. J. Zopf,et al.  Cell-Cycle Dependence of Transcription Dominates Noise in Gene Expression , 2013, PLoS Comput. Biol..

[3]  E. Klipp,et al.  Information theory based approaches to cellular signaling. , 2011, Biochimica et biophysica acta.

[4]  Clive G. Bowsher,et al.  Environmental sensing, information transfer, and cellular decision-making. , 2014, Current opinion in biotechnology.

[5]  Noam Slonim,et al.  Glucose regulates transcription in yeast through a network of signaling pathways , 2009, Molecular systems biology.

[6]  Aleksandra M Walczak,et al.  Information transmission in genetic regulatory networks: a review , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Peter G. Schultz,et al.  A chemical switch for inhibitor-sensitive alleles of any protein kinase , 2000, Nature.

[8]  C. Sparrow,et al.  Frequency encoded biochemical regulation is more accurate than amplitude dependent control. , 1981, Journal of theoretical biology.

[9]  Jared E. Toettcher,et al.  Using Optogenetics to Interrogate the Dynamic Control of Signal Transmission by the Ras/Erk Module , 2013, Cell.

[10]  Jeffrey W. Smith,et al.  Stochastic Gene Expression in a Single Cell , 2022 .

[11]  Joachim Goedhart,et al.  UvA-DARE ( Digital Academic Repository ) Optimization of fluorescent proteins for novel quantitative multiparameter microscopy approaches , 2007 .

[12]  Gasper Tkacik,et al.  Optimizing information flow in small genetic networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  E. O’Shea,et al.  Noise in protein expression scales with natural protein abundance , 2006, Nature Genetics.

[14]  Kazuhiro Aoki,et al.  Fluorescence resonance energy transfer imaging of cell signaling from in vitro to in vivo: Basis of biosensor construction, live imaging, and image processing , 2013, Development, growth & differentiation.

[15]  Ilya Nemenman,et al.  Networks Information Transduction Capacity of Noisy Biochemical Signaling , 2011 .

[16]  Oliver Medvedik,et al.  Stimulus Specificity of Gene Expression Programs Determined by Temporal Control of IKK Activity , 2013 .

[17]  M. Peter,et al.  Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings , 2013, Nature Methods.

[18]  W. Bialek,et al.  Information flow and optimization in transcriptional regulation , 2007, Proceedings of the National Academy of Sciences.

[19]  Alexander Hoffmann,et al.  Understanding the temporal codes of intra-cellular signals. , 2010, Current opinion in genetics & development.

[20]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[21]  Paul J. Choi,et al.  Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells , 2010, Science.

[22]  Ryoichiro Kageyama,et al.  Oscillatory Control of Factors Determining Multipotency and Fate in Mouse Neural Progenitors , 2013, Science.

[23]  Andre Levchenko,et al.  The application of information theory to biochemical signaling systems , 2012, Physical biology.

[24]  M. Elowitz,et al.  Functional Roles of Pulsing in Genetic Circuits , 2013, Science.

[25]  L. Tsimring,et al.  Accurate information transmission through dynamic biochemical signaling networks , 2014, Science.

[26]  Nir Friedman,et al.  Linking stochastic dynamics to population distribution: an analytical framework of gene expression. , 2006, Physical review letters.

[27]  Erin K O'Shea,et al.  Signal-dependent dynamics of transcription factor translocation controls gene expression , 2011, Nature Structural &Molecular Biology.

[28]  Johan Paulsson,et al.  Separating intrinsic from extrinsic fluctuations in dynamic biological systems , 2011, Proceedings of the National Academy of Sciences.

[29]  Takeshi Norimatsu,et al.  Encoding and Decoding , 2016 .

[30]  W. de Ronde,et al.  Multiplexing oscillatory biochemical signals , 2013, Physical biology.

[31]  I. Nemenman,et al.  Cellular noise and information transmission. , 2014, Current opinion in biotechnology.

[32]  Michael B. Elowitz,et al.  Pulsatile Dynamics in the Yeast Proteome , 2014, Current Biology.

[33]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[34]  J. Broach,et al.  A dynamic interplay of nucleosome and Msn2 binding regulates kinetics of gene activation and repression following stress , 2014, Nucleic acids research.

[35]  A. Brivanlou,et al.  Dynamics of TGF-β signaling reveal adaptive and pulsatile behaviors reflected in the nuclear localization of transcription factor Smad4 , 2012, Proceedings of the National Academy of Sciences.

[36]  Galit Lahav,et al.  Stimulus-dependent dynamics of p53 in single cells , 2011, Molecular systems biology.

[37]  A. Goldbeter,et al.  Frequency specificity in intercellular communication. Influence of patterns of periodic signaling on target cell responsiveness. , 1989, Biophysical journal.

[38]  Ryoichiro Kageyama,et al.  The roles and mechanism of ultradian oscillatory expression of the mouse Hes genes. , 2014, Seminars in cell & developmental biology.

[39]  A. Regev,et al.  Impulse Control: Temporal Dynamics in Gene Transcription , 2011, Cell.

[40]  J. Peccoud,et al.  Markovian Modeling of Gene-Product Synthesis , 1995 .

[41]  P. Swain,et al.  Intrinsic and extrinsic contributions to stochasticity in gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[42]  J. Derisi,et al.  Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise , 2006, Nature.

[43]  Filipe Tostevin,et al.  Multiplexing biochemical signals. , 2010, Physical review letters.

[44]  Julien F. Ollivier,et al.  Colored extrinsic fluctuations and stochastic gene expression , 2008, Molecular systems biology.

[45]  D. Shore,et al.  Growth control and ribosome biogenesis. , 2009, Current opinion in cell biology.

[46]  M. Ko,et al.  A stochastic model for gene induction. , 1991, Journal of theoretical biology.

[47]  Kami Kim,et al.  Bright and stable near infra-red fluorescent protein for in vivo imaging , 2011, Nature Biotechnology.

[48]  M. Berridge,et al.  The versatility and universality of calcium signalling , 2000, Nature Reviews Molecular Cell Biology.

[49]  Anders S Hansen,et al.  Promoter decoding of transcription factor dynamics involves a trade-off between noise and control of gene expression , 2013 .

[50]  Clive G. Bowsher,et al.  Information transfer by leaky, heterogeneous, protein kinase signaling systems , 2014, Proceedings of the National Academy of Sciences.

[51]  C. Stadtländer,et al.  Quantitative biology: from molecular to cellular systems , 2015, Journal of biological dynamics.

[52]  I. Nemenman,et al.  Optimal Signal Processing in Small Stochastic Biochemical Networks , 2006, PloS one.

[53]  M. Wall Quantitative biology : from molecular to cellular systems , 2012 .

[54]  G. Vinnicombe,et al.  Fundamental limits on the suppression of molecular fluctuations , 2010, Nature.

[55]  A. Coulon,et al.  Eukaryotic transcriptional dynamics: from single molecules to cell populations , 2013, Nature Reviews Genetics.

[56]  Gašper Tkačik,et al.  Noise and information transmission in promoters with multiple internal States. , 2013, Biophysical journal.

[57]  Farren J. Isaacs,et al.  Phenotypic consequences of promoter-mediated transcriptional noise. , 2006, Molecular cell.

[58]  J. Doyle,et al.  Bow Ties, Metabolism and Disease , 2022 .

[59]  Audrey P. Gasch,et al.  Dynamic Changes in Nucleosome Occupancy Are Not Predictive of Gene Expression Dynamics but Are Linked to Transcription and Chromatin Regulators , 2012, Molecular and Cellular Biology.

[60]  Eric Batchelor,et al.  Promoter decoding of transcription factor dynamics , 2013, Molecular systems biology.

[61]  W. Bialek,et al.  Information-based clustering. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[62]  G. Ammerer,et al.  Controlling gene expression in response to stress , 2011, Nature Reviews Genetics.

[63]  X. Escoté,et al.  Sip18 hydrophilin prevents yeast cell death during desiccation stress , 2012, Journal of applied microbiology.

[64]  F. Tostevin,et al.  Mutual information between input and output trajectories of biochemical networks. , 2009, Physical review letters.

[65]  Shinya Kuroda,et al.  Robustness and Compensation of Information Transmission of Signaling Pathways , 2013, Science.

[66]  M. Elowitz,et al.  Frequency-modulated nuclear localization bursts coordinate gene regulation , 2008, Nature.

[67]  Gasper Tkacik,et al.  Positional information, in bits , 2010, Proceedings of the National Academy of Sciences.

[68]  Anders S Hansen,et al.  High-throughput microfluidics to control and measure signaling dynamics in single yeast cells , 2015, Nature Protocols.

[69]  C. Martínez-Campa,et al.  Transcriptional regulation of the Saccharomyces cerevisiae HXK1, HXK2 and GLK1 genes , 1995, Yeast.

[70]  S. Leibler,et al.  Bacterial Persistence as a Phenotypic Switch , 2004, Science.

[71]  Michael T. Laub,et al.  Rewiring the Specificity of Two-Component Signal Transduction Systems , 2008, Cell.

[72]  Suguru Arimoto,et al.  An algorithm for computing the capacity of arbitrary discrete memoryless channels , 1972, IEEE Trans. Inf. Theory.

[73]  Albert Goldbeter,et al.  Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccharomyces cerevisiae , 2003, The Journal of cell biology.

[74]  Sarah Filippi,et al.  Information theory and signal transduction systems: from molecular information processing to network inference. , 2014, Seminars in cell & developmental biology.

[75]  William Bialek,et al.  Entropy and Information in Neural Spike Trains , 1996, cond-mat/9603127.

[76]  Richard E. Blahut,et al.  Computation of channel capacity and rate-distortion functions , 1972, IEEE Trans. Inf. Theory.

[77]  E. O’Shea,et al.  Global analysis of protein expression in yeast , 2003, Nature.

[78]  G. Lahav,et al.  Encoding and Decoding Cellular Information through Signaling Dynamics , 2013, Cell.

[79]  Clive G. Bowsher,et al.  Identifying sources of variation and the flow of information in biochemical networks , 2012, Proceedings of the National Academy of Sciences.

[80]  Jeremy Gunawardena,et al.  Tunable Signal Processing Through Modular Control of Transcription Factor Translocation , 2013, Science.

[81]  A. Goldbeter,et al.  Frequency specificity in intercellular communication , 2005 .

[82]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[83]  W. Bialek,et al.  Probing the Limits to Positional Information , 2007, Cell.

[84]  T. Elston,et al.  Kinetic insulation as an effective mechanism for achieving pathway specificity in intracellular signaling networks , 2007, Proceedings of the National Academy of Sciences.

[85]  J E Ferrell,et al.  The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. , 1998, Science.

[86]  John G. Albeck,et al.  Frequency-modulated pulses of ERK activity transmit quantitative proliferation signals. , 2013, Molecular cell.

[87]  I. Nemenman,et al.  Information Transduction Capacity of Noisy Biochemical Signaling Networks , 2011, Science.

[88]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[89]  Uri Alon,et al.  Dynamics of the p53-Mdm2 feedback loop in individual cells , 2004, Nature Genetics.

[90]  Ilya Nemenman,et al.  Information theory and adaptation , 2010, 1011.5466.

[91]  Alexandre V. Morozov,et al.  Noise and interlocking signaling pathways promote distinct transcription factor dynamics in response to different stresses , 2013, Molecular biology of the cell.

[92]  Pieter Rein ten Wolde,et al.  Fundamental Limits to Position Determination by Concentration Gradients , 2007, PLoS Comput. Biol..

[93]  Ned S Wingreen,et al.  Information processing and signal integration in bacterial quorum sensing , 2009, Molecular systems biology.