Ultralong silver trimolybdate nanowires: synthesis, phase transformation, stability, and their photocatalytic, optical, and electrical properties.

Ultralong orthorhombic silver trimolybdate nanowires (NWs) can be synthesized by a simple hydrothermal process without using any structure directing agent. Their phase transformation and stability to thermal and modeling sunlight from a Xe lamp have been systematically studied. Well-dispersed Ag nanoparticles can in situ form on the backbone of the nanowires by photoirradiation, and their photocatalytic and optical properties have been investigated. The investigations on photocatalytic, photoluminescent, and surface-enhanced Raman scattering (SERS) of the as-synthesized nanowires indicate that these nanowires loaded with Ag nanoparticles by photoirradiation can be a new kind of photocatalytic and luminescent material and potentially can be used as an efficient SERS substrate. The electrical conductivity of an individual nanowire exhibits almost nonlinear and symmetric current/voltage (I/V) characteristics for bias voltages in the range of -5 to 5 V. Ohmic mechanism, Schottky, and the Poole-Frenkel emission play an important part, respectively, in low, medium, and high electrical fields.

[1]  Xiaoyan Qin,et al.  Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol , 2011 .

[2]  Mingshan Zhu,et al.  Graphene oxide enwrapped Ag/AgX (X = Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst. , 2011, ACS nano.

[3]  J. Jolivet,et al.  Bi2O3, BiVO4, and Bi2WO6: Impact of Surface Properties on Photocatalytic Activity under Visible Light , 2011 .

[4]  I. Dmitruk,et al.  Surface plasmon as a probe for melting of silver nanoparticles , 2010, Nanotechnology.

[5]  Xiaoyan Qin,et al.  One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[6]  J. Qu,et al.  Plasmon-induced photodegradation of toxic pollutants with Ag-AgI/Al2O3 under visible-light irradiation. , 2010, Journal of the American Chemical Society.

[7]  Wei Liu,et al.  Effect of ultraviolet irradiation on luminescence properties of undoped ZnS and ZnS:Ag nanoparticles , 2009 .

[8]  Jiaguo Yu,et al.  Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanotube Arrays , 2009 .

[9]  T. Thongtem,et al.  Synthesis of lead molybdate and lead tungstate via microwave irradiation method , 2009 .

[10]  K. Matsukawa,et al.  Metal Nanoparticle/Polymer Hybrid Particles: The Catalytic Activity of Metal Nanoparticles Formed on the Surface of Polymer Particles by UV‐Irradiation , 2009 .

[11]  El-Zeiny M. Ebeid,et al.  Fluorescence enhancement of coumarin thiourea derivatives by Hg2+, Ag+, and silver nanoparticles. , 2009, The journal of physical chemistry. A.

[12]  Kangnian Fan,et al.  Dependence of Ag Deposition Methods on the Photocatalytic Activity and Surface State of TiO2 with Twistlike Helix Structure , 2009 .

[13]  Jiang-Jen Lin,et al.  Synthesis of immobilized silver nanoparticles on ionic silicate clay and observed low-temperature melting , 2009 .

[14]  C. Lamberti,et al.  From Isolated Ag+ Ions to Aggregated Ag0 Nanoclusters in Silver-Exchanged Engelhard Titanosilicate (ETS-10) Molecular Sieve: Reversible Behavior , 2009 .

[15]  Peng Wang,et al.  Highly Photocatalytic ZnO/In2O3 Heteronanostructures Synthesized by a Coprecipitation Method , 2009 .

[16]  Fengjia Fan,et al.  Superlong beta-AgVO3 nanoribbons: high-yield synthesis by a pyridine-assisted solution approach, their stability, electrical and electrochemical properties. , 2009, ACS nano.

[17]  Ashok Kumar Chakraborty,et al.  Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst , 2009 .

[18]  Ying Dai,et al.  Highly efficient visible-light plasmonic photocatalyst Ag@AgBr. , 2009, Chemistry.

[19]  Xian‐Wen Wei,et al.  Photoswitches of One-Dimensional Ag 2 MO 4 (M = Cr, Mo, and W) , 2009 .

[20]  Ying Dai,et al.  Composite semiconductor H(2)WO(4).H(2)O/AgCl as an efficient and stable photocatalyst under visible light. , 2008, Chemistry.

[21]  C. Armellini,et al.  Experimental study of the thermal expansion of (AgI)0.67(Ag2MoO4)0.33 ionic glass from 5 K to 300 K , 2008 .

[22]  Y. Ozaki,et al.  Preparation and SERS study of triangular silver nanoparticle self‐assembled films , 2008 .

[23]  Xiaoyan Qin,et al.  Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. , 2008, Angewandte Chemie.

[24]  Da Chen,et al.  Tuning Photoelectrochemical Performances of Ag−TiO2 Nanocomposites via Reduction/Oxidation of Ag , 2008 .

[25]  J. Livage,et al.  Synthesis and characterization of silver molybdate nanowires, nanorods and multipods , 2008 .

[26]  Shuitong Lee,et al.  An ultrasensitive method: surface-enhanced Raman scattering of Ag nanoparticles from beta-silver vanadate and copper. , 2008, Chemical communications.

[27]  K. I. Gnanasekar,et al.  Ammonia sensing properties of thick and thin films of Ag6Mo10O33 and Cr1·8Ti0·2O3+δ , 2008 .

[28]  C. Armellini,et al.  Local study on the MoO4 units in AgI-doped silver molybdate glasses , 2008 .

[29]  K. Moon,et al.  Synthesis and Thermal and Wetting Properties of Tin/Silver Alloy Nanoparticles for Low Melting Point Lead-Free Solders , 2007 .

[30]  Jinhua Ye,et al.  Photocatalytic Degradation of Rhodamine B over Pb3Nb4O13/Fumed SiO2 Composite under Visible Light Irradiation , 2007 .

[31]  C. M. Li,et al.  Synthesis and Electrical Transport of Novel Channel‐Structured β‐AgVO3 , 2007 .

[32]  J. Leckie,et al.  An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. , 2007, Nano letters.

[33]  A. Sanson,et al.  Influence of temperature on the local structure around iodine in fast-ion-conducting AgI:Ag2MoO4 glasses , 2007 .

[34]  S. Bhattacharya,et al.  Silver molybdate nanoparticles, nanowires, and nanorods embedded in glass nanocomposites , 2007 .

[35]  Z. Wang,et al.  Synthesis and Electrical Transport of Single‐Crystal NH4V3O8 Nanobelts. , 2006 .

[36]  S. Bhattacharya,et al.  Electrical properties of ion conducting molybdate glasses , 2006 .

[37]  S. Dong,et al.  Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution. , 2006, The journal of physical chemistry. B.

[38]  G. Dalapati,et al.  Leakage current characteristics and the energy band diagram of Al/ZrO2/Si0.3Ge0.7 hetero-MIS structures , 2006 .

[39]  Jong-Won Yoon,et al.  Photoluminescence in nanocrystalline MMoO4 (M = Ca, Ba) synthesized by a polymerized complex method , 2006 .

[40]  H. Fu,et al.  Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. , 2005, The journal of physical chemistry. B.

[41]  S. Kawata,et al.  DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy. , 2005, The journal of physical chemistry. B.

[42]  C. Bréchignac,et al.  Synthesis of silver molybdate clusters driven by laser-annealing. , 2004, The Journal of chemical physics.

[43]  K. Aoki,et al.  Thermal Metallization of Silver Stearate-Coated Nanoparticles Owing to the Destruction of the Shell Structure , 2004 .

[44]  Tetsu Tatsuma,et al.  Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. , 2004, Chemical communications.

[45]  K. I. Gnanasekar,et al.  Ag6Mo10O33 — a new silver ion conducting ammonia sensor material , 2004 .

[46]  Shuhong Yu,et al.  Selective synthesis and characterization of single-crystal silver molybdate/tungstate nanowires by a hydrothermal process. , 2004, Chemistry.

[47]  L. Gao,et al.  Wet chemical synthesis of ultralong and straight single-crystalline ZnO nanowires and their excellent UV emission properties , 2003 .

[48]  P. Kozma,et al.  Radiation damage of PbWO4 crystals due to irradiation by 60Co gamma rays , 2002 .

[49]  Markus Antonietti,et al.  Synthesis of very thin 1D and 2D CdWO(4) nanoparticles with improved fluorescence behavior by polymer-controlled crystallization. , 2002, Angewandte Chemie.

[50]  Yadong Li,et al.  Hydrothermal Preparation and Characterization of Luminescent CdWO4 Nanorods. , 2001 .

[51]  J. Yao,et al.  A Bicomponent TiO 2 /SnO 2 Particulate Film for Photocatalysis , 2000 .

[52]  Wojtek Wlodarski,et al.  Comparative study on micromorphology and humidity sensitive properties of thin-film and thick-film humidity sensors based on semiconducting MnWO4 , 2000 .

[53]  E. Wenda High Temperature Reactions in the MoO3-Ag2O System , 1998 .

[54]  H. Ehrenberg,et al.  Magnetic phase diagrams of , 1997 .

[55]  Q. Zhuang,et al.  Laser photochemical ablation of CdWO4 studied with the time‐of‐flight mass spectrometric technique , 1995 .

[56]  R. Yahya,et al.  A NEW SILVER ION CONDUCTOR FOR BATTERY APPLICATIONS , 1995 .

[57]  K. Hariharan,et al.  Mixed mobile ion effect in copper and silver molybdate glasses , 1992 .

[58]  U. Ozkan,et al.  Effect of O2 concentration on selective and complete oxidation of 1,3-butadiene, furan, and maleic anhydride over MnMoO4/MoO3 catalysts , 1990 .

[59]  R. Ansorge,et al.  Optical fibre readout and performance of small scintillating crystals for a fine-grained gamma detector , 1989 .

[60]  S. Hodorowicz,et al.  Preparation and characterization of silver trimolybdate , 1985 .

[61]  P. Hildebrandt,et al.  Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver , 1984 .

[62]  T. Oi,et al.  Scintillation study of ZnWO4 single crystals , 1980 .

[63]  K. Honda,et al.  Photocatalysis through excitation of adsorbates. 1. Highly efficient N-deethylation of rhodamine B adsorbed to cadmium sulfide , 1977 .

[64]  L. G. Uitert,et al.  Zinc Tungstates for Microwave Maser Applications , 1962 .

[65]  P. Jain,et al.  (CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 2009 .

[66]  G. Golan,et al.  INVESTIGATION OF PHASE TRANSITION MECHANISM IN VANADIUM OXIDE THIN FILMS , 2004 .

[67]  U. Ozkan,et al.  Isotopic Labeling Studies on Oxidative Coupling of Methane over Alkali Promoted Molybdate Catalysts , 1994 .