Representing a concept lattice by a graph
暂无分享,去创建一个
[1] Anne Berry,et al. Asteroidal triples of moplexes , 2001, Discret. Appl. Math..
[2] M. Golumbic. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .
[3] Lotfi Lakhal,et al. Designing Class Hierarchies of Object Database Schemas , 1997, BDA.
[4] Anne Berry,et al. Separability Generalizes Dirac's Theorem , 1998, Discret. Appl. Math..
[5] Rolf H. M ring. Triangulating graphs without asteroidal triples , 1996 .
[6] Weifa Liang,et al. Efficient Enumeration of all Minimal Separators in a Graph , 1997, Theor. Comput. Sci..
[7] Alain Sigayret. Data Mining : une approche par les graphes , 2002 .
[8] Srinivasan Parthasarathy,et al. New Algorithms for Fast Discovery of Association Rules , 1997, KDD.
[9] Anne Berry,et al. A wide-range efficient algorithm for minimal triangulation , 1999, SODA '99.
[10] Robert E. Tarjan,et al. Decomposition by clique separators , 1985, Discret. Math..
[11] Rokia Missaoui,et al. A Framework for Incremental Generation of Frequent Closed Itemsets , 2002 .
[12] Norbert Polat,et al. Treillis de séparation des graphes , 1976 .
[13] Gert Sabidussi. Weak separation lattices of graphs , 1976 .
[14] Wen-Lian Hsu,et al. Fast and Simple Algorithms for Recognizing Chordal Comparability Graphs and Interval Graphs , 1999, SIAM J. Comput..
[15] Wen-Lian Hsu,et al. Substitution Decomposition on Chordal Graphs and Applications , 1991, ISA.
[16] J. Bordat,et al. ORTHOTREILLIS ET SÉPARABILITÉ DANS UN GRAPHE NON ORIENTÉ , 1999 .
[17] C. Lekkeikerker,et al. Representation of a finite graph by a set of intervals on the real line , 1962 .
[18] A. Asensio. Structural and Algorithmic Aspects of Chordal Graph Embeddings , 1996 .
[19] G. Dirac. On rigid circuit graphs , 1961 .
[20] Anne Berry,et al. Generating All the Minimal Separators of a Graph , 1999, Int. J. Found. Comput. Sci..
[21] Robert E. Tarjan,et al. Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..
[22] L. Beran,et al. [Formal concept analysis]. , 1996, Casopis lekaru ceskych.
[23] F. Escalante. Schnittverbände in Graphen , 1972 .
[24] Lhouari Nourine,et al. A Fast Algorithm for Building Lattices , 1999, Inf. Process. Lett..
[25] Rolf H. Möhring,et al. Triangulating Graphs Without Asteroidal Triples , 1996, Discret. Appl. Math..
[26] Anne Berry,et al. Concepts can't afford to stammer , 2003 .
[27] J. Bordat. Calcul pratique du treillis de Galois d'une correspondance , 1986 .
[28] Hervé Leblanc,et al. Galois lattice as a framework to specify building class hierarchies algorithms , 2000, RAIRO Theor. Informatics Appl..
[29] Hong Shen,et al. Separators Are as Simple as Cutsets , 1999, ASIAN.
[30] R. Halin,et al. Über trennende Eckenmengen in Graphen und den Mengerschen Satz , 1964 .
[31] Jeremy P. Spinrad,et al. Treewidth and pathwidth of cocomparability graphs of bounded dimension , 1993 .
[32] Andreas Parra,et al. How to Use the Minimal Separators of a Graph for its Chordal Triangulation , 1995, ICALP.
[33] A. Berry. Désarticulation d'un graphe , 1998 .
[34] Ioan Todinca. Aspects algorithmiques des triangulations minimales des graphes , 1999 .
[35] N. Sloane,et al. Proof Techniques in Graph Theory , 1970 .
[36] Allan Borodin,et al. On the Number of Additions to Compute Specific Polynomials , 1976, SIAM J. Comput..
[37] Michael Hager. On Halin-lattices in graphs , 1983, Discret. Math..
[38] Peter L. Hammer,et al. Difference graphs , 1990, Discret. Appl. Math..
[39] Hanns-Georg Leimer,et al. Optimal decomposition by clique separators , 1993, Discret. Math..
[40] R. Möhring. Algorithmic graph theory and perfect graphs , 1986 .
[41] Dieter Kratsch,et al. Listing All Minimal Separators of a Graph , 1998, SIAM J. Comput..