Representing a concept lattice by a graph

Concept lattices (also called Galois lattices) are an ordering of the maximal rectangles defined by a binary relation. In this paper, we present a new relationship between lattices and graphs: given a binary relation R, we define an underlying graph G"R, and establish a one-to-one correspondence between the set of elements of the concept lattice of R and the set of minimal separators of G"R. We explain how to use the properties of minimal separators to define a sublattice, decompose a binary relation, and generate the elements of the lattice.

[1]  Anne Berry,et al.  Asteroidal triples of moplexes , 2001, Discret. Appl. Math..

[2]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[3]  Lotfi Lakhal,et al.  Designing Class Hierarchies of Object Database Schemas , 1997, BDA.

[4]  Anne Berry,et al.  Separability Generalizes Dirac's Theorem , 1998, Discret. Appl. Math..

[5]  Rolf H. M ring Triangulating graphs without asteroidal triples , 1996 .

[6]  Weifa Liang,et al.  Efficient Enumeration of all Minimal Separators in a Graph , 1997, Theor. Comput. Sci..

[7]  Alain Sigayret Data Mining : une approche par les graphes , 2002 .

[8]  Srinivasan Parthasarathy,et al.  New Algorithms for Fast Discovery of Association Rules , 1997, KDD.

[9]  Anne Berry,et al.  A wide-range efficient algorithm for minimal triangulation , 1999, SODA '99.

[10]  Robert E. Tarjan,et al.  Decomposition by clique separators , 1985, Discret. Math..

[11]  Rokia Missaoui,et al.  A Framework for Incremental Generation of Frequent Closed Itemsets , 2002 .

[12]  Norbert Polat,et al.  Treillis de séparation des graphes , 1976 .

[13]  Gert Sabidussi Weak separation lattices of graphs , 1976 .

[14]  Wen-Lian Hsu,et al.  Fast and Simple Algorithms for Recognizing Chordal Comparability Graphs and Interval Graphs , 1999, SIAM J. Comput..

[15]  Wen-Lian Hsu,et al.  Substitution Decomposition on Chordal Graphs and Applications , 1991, ISA.

[16]  J. Bordat,et al.  ORTHOTREILLIS ET SÉPARABILITÉ DANS UN GRAPHE NON ORIENTÉ , 1999 .

[17]  C. Lekkeikerker,et al.  Representation of a finite graph by a set of intervals on the real line , 1962 .

[18]  A. Asensio Structural and Algorithmic Aspects of Chordal Graph Embeddings , 1996 .

[19]  G. Dirac On rigid circuit graphs , 1961 .

[20]  Anne Berry,et al.  Generating All the Minimal Separators of a Graph , 1999, Int. J. Found. Comput. Sci..

[21]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[22]  L. Beran,et al.  [Formal concept analysis]. , 1996, Casopis lekaru ceskych.

[23]  F. Escalante Schnittverbände in Graphen , 1972 .

[24]  Lhouari Nourine,et al.  A Fast Algorithm for Building Lattices , 1999, Inf. Process. Lett..

[25]  Rolf H. Möhring,et al.  Triangulating Graphs Without Asteroidal Triples , 1996, Discret. Appl. Math..

[26]  Anne Berry,et al.  Concepts can't afford to stammer , 2003 .

[27]  J. Bordat Calcul pratique du treillis de Galois d'une correspondance , 1986 .

[28]  Hervé Leblanc,et al.  Galois lattice as a framework to specify building class hierarchies algorithms , 2000, RAIRO Theor. Informatics Appl..

[29]  Hong Shen,et al.  Separators Are as Simple as Cutsets , 1999, ASIAN.

[30]  R. Halin,et al.  Über trennende Eckenmengen in Graphen und den Mengerschen Satz , 1964 .

[31]  Jeremy P. Spinrad,et al.  Treewidth and pathwidth of cocomparability graphs of bounded dimension , 1993 .

[32]  Andreas Parra,et al.  How to Use the Minimal Separators of a Graph for its Chordal Triangulation , 1995, ICALP.

[33]  A. Berry Désarticulation d'un graphe , 1998 .

[34]  Ioan Todinca Aspects algorithmiques des triangulations minimales des graphes , 1999 .

[35]  N. Sloane,et al.  Proof Techniques in Graph Theory , 1970 .

[36]  Allan Borodin,et al.  On the Number of Additions to Compute Specific Polynomials , 1976, SIAM J. Comput..

[37]  Michael Hager On Halin-lattices in graphs , 1983, Discret. Math..

[38]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[39]  Hanns-Georg Leimer,et al.  Optimal decomposition by clique separators , 1993, Discret. Math..

[40]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[41]  Dieter Kratsch,et al.  Listing All Minimal Separators of a Graph , 1998, SIAM J. Comput..