Gabor feature based face recognition using kernel methods

A novel Gabor-kernel face recognition method is proposed in this paper. This involves convolving a face image with a series of Gabor wavelets at different scales, locations, and orientations. Kernel methods such as kernel principal component analysis (KPCA) and kernel discriminant analysis (KDA) are then applied to the feature vectors for dimension reduction as well as class separability enhancement. A database of 600 frontal-view face images from the FERET face database is used to test the method. Experimental results demonstrate the advantage of Kernel methods over classical principal component analysis (PCA) and linear discriminant analysis (LDA). Significant improvements are also observed when the Gabor filtered images are used for feature extraction instead of the original images. The Gabor + KDA method achieves 92% recognition accuracy using only 35 features of a face image.

[1]  Yee-Hong Yang,et al.  Face recognition approach based on rank correlation of Gabor-filtered images , 2002, Pattern Recognit..

[2]  K. Kim,et al.  Face recognition using kernel principal component analysis , 2002, IEEE Signal Process. Lett..

[3]  Stan Z. Li,et al.  Face recognition based on multiple facial features , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[4]  Marian Stewart Bartlett,et al.  A comparison of Gabor filter methods for automatic detection of facial landmarks , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[5]  Roberto Brunelli,et al.  Face Recognition: Features Versus Templates , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Vicki Bruce,et al.  Face Recognition: From Theory to Applications , 1999 .

[7]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[8]  Joachim M. Buhmann,et al.  Distortion Invariant Object Recognition in the Dynamic Link Architecture , 1993, IEEE Trans. Computers.

[9]  Shaogang Gong,et al.  Constructing facial identity surfaces in a nonlinear discriminating space , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[10]  Syed A. Rizvi,et al.  The FERET Evaluation , 1998 .

[11]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[12]  Chengjun Liu,et al.  Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition , 2002, IEEE Trans. Image Process..

[13]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[14]  Yoshihiko Hamamoto,et al.  A gabor filter-based method for recognizing handwritten numerals , 1998, Pattern Recognit..

[15]  S Marcelja,et al.  Mathematical description of the responses of simple cortical cells. , 1980, Journal of the Optical Society of America.

[16]  Ming-Hsuan Yang,et al.  Kernel Eigenfaces vs. Kernel Fisherfaces: Face recognition using kernel methods , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[17]  William E. Higgins,et al.  Efficient Gabor filter design for texture segmentation , 1996, Pattern Recognit..

[18]  Hyeonjoon Moon,et al.  FERET Evaluation Methodology for Face-Recognition Algorithms | NIST , 1998 .

[19]  Barry T. Thomas,et al.  Automatic Selection of Gabor Filters for Pixel Classification , 1997 .

[20]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[21]  Shimon Ullman,et al.  Face Recognition: The Problem of Compensating for Changes in Illumination Direction , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Rama Chellappa,et al.  Human and machine recognition of faces: a survey , 1995, Proc. IEEE.

[23]  Monson H. Hayes,et al.  An embedded HMM-based approach for face detection and recognition , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[24]  P. Jonathon Phillips,et al.  Support Vector Machines Applied to Face Recognition , 1998, NIPS.

[25]  Gunnar Rätsch,et al.  Input space versus feature space in kernel-based methods , 1999, IEEE Trans. Neural Networks.

[26]  Wenyi Zhao,et al.  Face similarity space as perceived by humans and artificial systems , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[27]  Jun Zhang,et al.  Pace recognition: eigenface, elastic matching, and neural nets , 1997, Proc. IEEE.

[28]  Rama Chellappa,et al.  An experimental evaluation of linear and kernel-based methods for face recognition , 2002, Sixth IEEE Workshop on Applications of Computer Vision, 2002. (WACV 2002). Proceedings..

[29]  Shaoyan Zhang,et al.  Face recognition with support vector machine , 2003, IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, 2003. Proceedings. 2003.

[30]  Sheng-De Wang,et al.  Fingerprint feature extraction using Gabor filters , 1999 .

[31]  Federico Girosi,et al.  Training support vector machines: an application to face detection , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[32]  Haiyuan Wu,et al.  Optimal Gabor filters for high speed face identification , 2002, Object recognition supported by user interaction for service robots.

[33]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[34]  Norbert Krüger,et al.  Face Recognition by Elastic Bunch Graph Matching , 1997, CAIP.

[35]  Ming-Hsuan Yang,et al.  Gender classification with support vector machines , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[36]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.