Atom–atom partitioning of intramolecular and intermolecular Coulomb energy

An atom–atom partitioning of the (super)molecular Coulomb energy is proposed on the basis of the topological partitioning of the electron density. Atom–atom contributions to the molecular intra- and intermolecular Coulomb energy are computed exactly, i.e., via a double integration over atomic basins, and by means of the spherical tensor multipole expansion, up to rank L=lA+lB+1=5. The convergence of the multipole expansion is able to reproduce the exact interaction energy with an accuracy of 0.1–2.3 kJ/mol at L=5 for atom pairs, each atom belonging to a different molecule constituting a van der Waals complex, and for nonbonded atom–atom interactions in single molecules. The atom–atom contributions do not show a significant basis set dependence (3%) provided electron correlation and polarization basis functions are included. The proposed atom–atom Coulomb interaction energy can be used both with post-Hartree–Fock wave functions and experimental charge densities in principle. The Coulomb interaction energy ...

[1]  Francois Gygi,et al.  An ab initio study of DNA base pair hydrogen bonding: a comparison of plane-wave versus Gaussian-type function methods , 1999 .

[2]  Z. Maksić,et al.  Theoretical Models of Chemical Bonding , 1991 .

[3]  Æleen Frisch,et al.  Exploring chemistry with electronic structure methods , 1996 .

[4]  Paul L. A. Popelier,et al.  Atomic partitioning of molecular electrostatic potentials , 2000 .

[5]  P. Frey,et al.  A low-barrier hydrogen bond in the catalytic triad of serine proteases. , 1994, Science.

[6]  Anthony J. Stone,et al.  An intermolecular perturbation theory for the region of moderate overlap , 1984 .

[7]  A. Stone Classical Electrostatics in Molecular Interactions , 1991 .

[8]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[9]  Boris R. Stefanov,et al.  An efficient approach to calculation of zero‐flux atomic surfaces and generation of atomic integration data , 1995, J. Comput. Chem..

[10]  S. Scheiner Molecular Interactions. From van der Waals to Strongly Bound Complexes , 1997 .

[11]  A. Stone,et al.  Towards an accurate intermolecular potential for water , 1992 .

[12]  A. Sapse Molecular orbital calculations for biological systems , 1998 .

[13]  Paul L. A. Popelier,et al.  Atoms in molecules , 2000 .

[14]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[15]  Paul L. A. Popelier,et al.  Atoms in Molecules: An Introduction , 2000 .

[16]  B. A. Hess,et al.  Calculation of orientation-dependent double-tensor moments for Coulomb-type intermolecular interactions , 1994 .

[17]  Kazuo Kitaura,et al.  A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation , 1976 .

[18]  K. Ng,et al.  Charge overlap effects and the validity of the multipole results for first-order molecule-molecule interaction energies , 1976 .

[19]  N. Handy,et al.  Ab initio studies of internal rotation barriers and vibrational frequencies of (C2H2)2, (CO2)2, and C2H2-CO2 , 1990 .

[20]  J. V. Lenthe,et al.  State of the Art in Counterpoise Theory , 1994 .

[21]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[22]  Mark S. Gordon,et al.  Evaluation of Charge Penetration Between Distributed Multipolar Expansions , 2000 .

[23]  Paul L. A. Popelier,et al.  A method to integrate an atom in a molecule without explicit representation of the interatomic surface , 1998 .

[24]  Distributed polarizabilities using the topological theory of atoms in molecules , 1994 .

[25]  Friedrich Biegler-König,et al.  Calculation of the average properties of atoms in molecules. II , 1982 .

[26]  Paul L. A. Popelier,et al.  Convergence of the multipole expansion for electrostatic potentials of finite topological atoms , 2000 .

[27]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[28]  M. Alderton,et al.  Explicit formulae for the electrostatic energy, forces and torques between a pair of molecules of arbitrary symmetry , 1984 .

[29]  R. Buehler,et al.  Bipolar Expansion of Coulombic Potentials , 1951 .

[30]  K. Szalewicz,et al.  Symmetry forcing and convergence properties of perturbation expansions for molecular interaction energies , 1978 .

[31]  R. Bader,et al.  Calculation of the average properties of atoms in molecules. II , 1981 .

[32]  M. Szczęśniak,et al.  Origins of Structure and Energetics of van der Waals Clusters from ab Initio Calculations , 1994 .

[33]  J. Korchowiec,et al.  New energy partitioning scheme based on the self-consistent charge and configuration method for subsystems: Application to water dimer system , 2000 .

[34]  Eric D. Glendening,et al.  Natural energy decomposition analysis: An energy partitioning procedure for molecular interactions with application to weak hydrogen bonding, strong ionic, and moderate donor–acceptor interactions , 1994 .

[35]  R. Ahlrichs Comments on the convergence of the ordinary Rayleigh-Schrödinger perturbation expansion , 1973 .