Distributed compression-estimation using wireless sensor networks

This paper provides an overview of distributed estimation-compression problems encountered with wireless sensor networks (WSN). A general formulation of distributed compression-estimation under rate constraints was introduced, pertinent signal processing algorithms were developed, and emerging tradeoffs were delineated from an information theoretic perspective. Specifically, we designed rate-constrained distributed estimators for various signal models with variable knowledge of the underlying data distributions. We proved theoretically, and corroborated with examples, that when the noise distributions are either completely known, partially known or completely unknown, distributed estimation is possible with minimal bandwidth requirements which can achieve the same order of mean square error (MSE) performance as the corresponding centralized clairvoyant estimators.

[1]  Zhi-Quan Luo,et al.  Optimal linear decentralized estimation in a bandwidth constrained sensor network , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[2]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[3]  Peng Zhang,et al.  Optimal linear estimation fusion - part VI: sensor data compression , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.

[4]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[5]  H. Vincent Poor,et al.  Distributed learning in wireless sensor networks , 2005, IEEE Signal Processing Magazine.

[6]  Zhi-Quan Luo,et al.  Universal decentralized detection in a bandwidth-constrained sensor network , 2004, IEEE Transactions on Signal Processing.

[7]  Toby Berger,et al.  An upper bound on the sum-rate distortion function and its corresponding rate allocation schemes for the CEO problem , 2004, IEEE Journal on Selected Areas in Communications.

[8]  Yasutada Oohama,et al.  The Rate-Distortion Function for the Quadratic Gaussian CEO Problem , 1998, IEEE Trans. Inf. Theory.

[9]  RibeiroA. Bandwidth-constrained distributed estimation for wireless sensor Networks-part I , 2006 .

[10]  Ian F. Akyildiz,et al.  Wireless sensor networks: a survey , 2002, Comput. Networks.

[11]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[12]  P. Djurić,et al.  Particle filtering , 2003, IEEE Signal Process. Mag..

[13]  Ioannis D. Schizas,et al.  Distortion-rate analysis for distributed estimation with wireless sensor networksy , 2005 .

[14]  Krishna M. Sivalingam,et al.  Data Gathering Algorithms in Sensor Networks Using Energy Metrics , 2002, IEEE Trans. Parallel Distributed Syst..

[15]  John N. Tsitsiklis,et al.  Data fusion with minimal communication , 1994, IEEE Trans. Inf. Theory.

[16]  Zhi-Quan Luo,et al.  Decentralized estimation in an inhomogeneous sensing environment , 2005, IEEE Transactions on Information Theory.

[17]  Michael Gastpar,et al.  The distributed Karhunen-Loeve transform , 2002, 2002 IEEE Workshop on Multimedia Signal Processing..

[18]  Zhi-Quan Luo,et al.  Distributed Estimation Using Reduced-Dimensionality Sensor Observations , 2005, IEEE Transactions on Signal Processing.

[19]  Andrea J. Goldsmith,et al.  Power scheduling of universal decentralized estimation in sensor networks , 2006, IEEE Transactions on Signal Processing.

[20]  Toby Berger,et al.  The CEO problem [multiterminal source coding] , 1996, IEEE Trans. Inf. Theory.

[21]  João Barros,et al.  Network information flow with correlated sources , 2005, IEEE Transactions on Information Theory.

[22]  Zhi-Quan Luo,et al.  Compression of correlated Gaussian sources under individual distortion criteria , 2005 .

[23]  Z.-Q. Luo,et al.  Performance bounds for the rate-constrained universal decentralized estimators in sensor networks , 2005, IEEE 6th Workshop on Signal Processing Advances in Wireless Communications, 2005..

[24]  Alejandro Ribeiro,et al.  Bandwidth-constrained distributed estimation for wireless sensor Networks-part I: Gaussian case , 2006, IEEE Transactions on Signal Processing.

[25]  Zhi-Quan Luo,et al.  Universal decentralized estimation in a bandwidth constrained sensor network , 2005, IEEE Transactions on Information Theory.

[26]  Toby Berger,et al.  The quadratic Gaussian CEO problem , 1997, IEEE Trans. Inf. Theory.

[27]  Alfred O. Hero,et al.  Distributed maximum likelihood estimation for sensor networks , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[28]  Georgios B. Giannakis,et al.  Energy-Constrained Optimal Quantization for Wireless Sensor Networks , 2004, 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004..

[29]  John Anderson,et al.  Wireless sensor networks for habitat monitoring , 2002, WSNA '02.

[30]  Zhi-Quan Luo An isotropic universal decentralized estimation scheme for a bandwidth constrained ad hoc sensor network , 2005, IEEE J. Sel. Areas Commun..

[31]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[32]  Jan M. Rabaey,et al.  PicoRadio Supports Ad Hoc Ultra-Low Power Wireless Networking , 2000, Computer.

[33]  Michael Gastpar,et al.  Source-Channel Communication in Sensor Networks , 2003, IPSN.

[34]  JAMAL N. AL-KARAKI,et al.  Routing techniques in wireless sensor networks: a survey , 2004, IEEE Wireless Communications.

[35]  G.B. Giannakis,et al.  Bandwidth-Constrained MAP Estimation for Wireless Sensor Networks , 2005, Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005..

[36]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[37]  Haralabos C. Papadopoulos,et al.  Sequential signal encoding from noisy measurements using quantizers with dynamic bias control , 2001, IEEE Trans. Inf. Theory.

[38]  Zhi-Quan Luo,et al.  Multiterminal Source-Channel Communication Under Orthogonal Multiple Access , 2005 .

[39]  Andrea J. Goldsmith,et al.  Linear Coherent Decentralized Estimation , 2006, IEEE Transactions on Signal Processing.

[40]  Y. Bar-Shalom,et al.  Censoring sensors: a low-communication-rate scheme for distributed detection , 1996, IEEE Transactions on Aerospace and Electronic Systems.

[41]  P.K. Varshney,et al.  Channel-aware distributed detection in wireless sensor networks , 2006, IEEE Signal Processing Magazine.

[42]  Stergios I. Roumeliotis,et al.  SOI-KF: Distributed Kalman Filtering With Low-Cost Communications Using The Sign Of Innovations , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[43]  M. Vetterli,et al.  Sensing reality and communicating bits: a dangerous liaison , 2006, IEEE Signal Processing Magazine.

[44]  Te Sun Han,et al.  Slepian-Wolf-Cover Theorem for Networks of Channels , 1980, Inf. Control..

[45]  Zhi-Quan Luo,et al.  Optimal rate allocation for the vector Gaussian CEO problem , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[46]  Mónica F. Bugallo,et al.  Tracking with particle filtering in tertiary wireless sensor networks , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[47]  Nicholas G. Polson,et al.  Particle Filtering , 2006 .

[48]  Stephen Boyd,et al.  MAXDET: Software for Determinant Maximization Problems User's Guide , 1996 .

[49]  Andrea J. Goldsmith,et al.  Design challenges for energy-constrained ad hoc wireless networks , 2002, IEEE Wirel. Commun..

[50]  Masoud Salehi,et al.  Multiple access channels with arbitrarily correlated sources , 1980, IEEE Trans. Inf. Theory.

[51]  Zhen Zhang,et al.  On the CEO problem , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[52]  Andrea J. Goldsmith,et al.  Energy-constrained modulation optimization , 2005, IEEE Transactions on Wireless Communications.