The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic

Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors and regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions. DOI: http://dx.doi.org/10.7554/eLife.16096.001

[1]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[2]  A. Beskow,et al.  The Oct1 homolog Nubbin is a repressor of NF-κB-dependent immune gene expression that increases the tolerance to gut microbiota , 2013, BMC Biology.

[3]  P. Spierer,et al.  SU ( VAR ) 3-7 , a Drosophila heterochromatin-associated protein and companion of HP 1 in the genomic silencing of position-effect variegation of homeotic gene complexes , 2013 .

[4]  Laura Fanti,et al.  Heterochromatin Protein 1 (HP1a) Positively Regulates Euchromatic Gene Expression through RNA Transcript Association and Interaction with hnRNPs in Drosophila , 2009, PLoS genetics.

[5]  Jun Wang,et al.  Two Dobzhansky-Muller Genes Interact to Cause Hybrid Lethality in Drosophila , 2006, Science.

[6]  I. Makunin,et al.  The Drosophila suppressor of underreplication protein binds to late-replicating regions of polytene chromosomes. , 2002, Genetics.

[7]  V. T. Forsyth,et al.  The Pentameric Nucleoplasmin Fold Is Present in Drosophila FKBP39 and a Large Number of Chromatin-Related Proteins , 2015, Journal of molecular biology.

[8]  R. Levis,et al.  Cell lineage‐specific expression of modulo, a dose‐dependent modifier of variegation in Drosophila. , 1992, The EMBO journal.

[9]  Robert Tibshirani,et al.  The Entire Regularization Path for the Support Vector Machine , 2004, J. Mach. Learn. Res..

[10]  J. Sedat,et al.  Direct Evidence of a Role for Heterochromatin in Meiotic Chromosome Segregation , 1996, Cell.

[11]  Ryoichi Nakamura,et al.  Inheritance of Stress-Induced, ATF-2-Dependent Epigenetic Change , 2011, Cell.

[12]  S. Elgin,et al.  The Large Isoform of Drosophila melanogaster Heterochromatin Protein 2 Plays a Critical Role in Gene Silencing and Chromosome Structure , 2006, Genetics.

[13]  S. Gygi,et al.  HP1 proteins form distinct complexes and mediate heterochromatic gene silencing by nonoverlapping mechanisms. , 2008, Molecular cell.

[14]  O. Issinger,et al.  The Ste locus, a component of the parasitic cry-Ste system of Drosophila melanogaster, encodes a protein that forms crystals in primary spermatocytes and mimics properties of the beta subunit of casein kinase 2. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Vikki M. Weake,et al.  A novel histone fold domain-containing protein that replaces TAF6 in Drosophila SAGA is required for SAGA-dependent gene expression. , 2009, Genes & development.

[16]  L. Boldyreva,et al.  Effect of the Suppressor of Underreplication (SuUR) gene on position-effect variegation silencing in Drosophila melanogaster. , 2003, Genetics.

[17]  B. Mellone,et al.  A Role for the CAL1-Partner Modulo in Centromere Integrity and Accurate Chromosome Segregation in Drosophila , 2012, PloS one.

[18]  Haifan Lin,et al.  An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster , 2007, Nature.

[19]  Julius Brennecke,et al.  Transcriptional Silencing of Transposons by Piwi and Maelstrom and Its Impact on Chromatin State and Gene Expression , 2012, Cell.

[20]  Karsten Rippe,et al.  Multiscale analysis of dynamics and interactions of heterochromatin protein 1 by fluorescence fluctuation microscopy. , 2009, Biophysical journal.

[21]  Carolyn A. Larabell,et al.  Nuclear Aggregation of Olfactory Receptor Genes Governs Their Monogenic Expression , 2012, Cell.

[22]  F. Karch,et al.  Tousled-like kinase functions with the chromatin assembly pathway regulating nuclear divisions. , 2003, Genes & development.

[23]  Peter V Kharchenko,et al.  Heterochromatin-associated interactions of Drosophila HP1a with dADD1, HIPP1, and repetitive RNAs , 2014, Genes & development.

[24]  B. Alberts,et al.  The Drosophila GAGA transcription factor is associated with specific regions of heterochromatin throughout the cell cycle. , 1994, The EMBO journal.

[25]  G. T. Rudkin Non replicating DNA in Drosophila. , 1969, Genetics.

[26]  D. Kioussis,et al.  HP1-β is required for development of the cerebral neocortex and neuromuscular junctions , 2008, The Journal of cell biology.

[27]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[28]  F. Winston,et al.  SPT20/ADA5 encodes a novel protein functionally related to the TATA-binding protein and important for transcription in Saccharomyces cerevisiae , 1996, Molecular and cellular biology.

[29]  G. Lomberk,et al.  Evidence for the existence of an HP1-mediated subcode within the histone code , 2006, Nature Cell Biology.

[30]  S. Celniker,et al.  Development of expression-ready constructs for generation of proteomic libraries. , 2011, Methods in molecular biology.

[31]  Xiaomin Bao,et al.  The JIL-1 histone H3S10 kinase regulates dimethyl H3K9 modifications and heterochromatic spreading in Drosophila , 2005, Development.

[32]  G. Karpen,et al.  Centric Heterochromatin and the Efficiency of Achiasmate Disjunction in Drosophila Female Meiosis , 1996, Science.

[33]  M. Fang,et al.  Drosophila ptip is essential for anterior/posterior patterning in development and interacts with the PcG and trxG pathways , 2009 .

[34]  M. Fang,et al.  Drosophila ptip is essential for anterior/posterior patterning in development and interacts with the PcG and trxG pathways , 2009, Development.

[35]  A. Spradling,et al.  Chromatin Loosening by Poly(ADP)-Ribose Polymerase (PARP) at Drosophila Puff Loci , 2003, Science.

[36]  G. Reuter,et al.  Third chromosome suppressor of position-effect variegation loci in Drosophila melanogaster , 1986, Molecular and General Genetics MGG.

[37]  Sylvain V Costes,et al.  Automatic and quantitative measurement of protein-protein colocalization in live cells. , 2004, Biophysical journal.

[38]  J. Workman,et al.  Heterochromatin protein 1a stimulates histone H3 lysine 36 demethylation by the Drosophila KDM4A demethylase. , 2008, Molecular cell.

[39]  A. Klebes,et al.  The winged-helix transcription factor JUMU regulates development, nucleolus morphology and function, and chromatin organization of Drosophila melanogaster , 2010, Chromosome Research.

[40]  E. Kremmer,et al.  The nucleoplasmin homolog NLP mediates centromere clustering and anchoring to the nucleolus. , 2013, Molecular cell.

[41]  C. L. Chiang Statistical Methods of Analysis , 2003 .

[42]  E. Lewis The phenomenon of position effect. , 1950, Advances in genetics.

[43]  A. Caudy,et al.  A micrococcal nuclease homologue in RNAi effector complexes , 2003, Nature.

[44]  F. Kafatos,et al.  A Drosophila single-strand DNA/RNA-binding factor contains a high-mobility-group box and is enriched in the nucleolus. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[45]  E. Ballestar,et al.  A Drosophila MBD family member is a transcriptional corepressor associated with specific genes. , 2001, European journal of biochemistry.

[46]  P. Spierer,et al.  Dependence of position-effect variegation in Drosophila on dose of a gene encoding an unusual zinc-finger protein , 1990, Nature.

[47]  D. Fontana,et al.  Imaging features , 1998 .

[48]  M. Siomi,et al.  A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. , 2002, Genes & development.

[49]  S. Henikoff,et al.  Changes in Chromosomal Localization of Heterochromatin-binding Proteins during the Cell Cycle in Drosophila , 1998, The Journal of cell biology.

[50]  Bahram Parvin,et al.  Imaging Features that Discriminate between Foci Induced by High- and Low-LET Radiation in Human Fibroblasts , 2006, Radiation research.

[51]  S. Diekmann,et al.  High- and low-mobility populations of HP1 in heterochromatin of mammalian cells. , 2004, Molecular biology of the cell.

[52]  Rainer Breitling,et al.  Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments , 2004, FEBS letters.

[53]  Andrew J. Bannister,et al.  Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain , 2001, Nature.

[54]  P. Angrand,et al.  Analysis of the human HP1 interactome reveals novel binding partners. , 2011, Biochemical and biophysical research communications.

[55]  K. Dyer The effect of radiation on small competing populations of Drosophilamelanogaster. I. The accumulation of genetic damage. , 1969, Genetics.

[56]  Amber L. Couzens,et al.  The CRAPome: a Contaminant Repository for Affinity Purification Mass Spectrometry Data , 2013, Nature Methods.

[57]  H. Bussemaker,et al.  HP1 controls genomic targeting of four novel heterochromatin proteins in Drosophila , 2007, The EMBO journal.

[58]  Brigitte Bogert,et al.  The fragile X-related Gene Affects the Crawling Behavior of Drosophila Larvae by Regulating the mRNA Level of the DEG/ENaC Protein Pickpocket1 , 2004, Current Biology.

[59]  P. Schedl,et al.  Functioning of the Drosophila Wilms'-Tumor-1-Associated Protein Homolog, Fl(2)d, in Sex-Lethal-Dependent Alternative Splicing , 2008, Genetics.

[60]  A. Emelyanov,et al.  Protein Complex of Drosophila ATRX/XNP and HP1a Is Required for the Formation of Pericentric Beta-heterochromatin in Vivo* , 2010, The Journal of Biological Chemistry.

[61]  Yang Shi,et al.  Loss of YY1 Impacts the Heterochromatic State and Meiotic Double-Strand Breaks during Mouse Spermatogenesis , 2009, Molecular and Cellular Biology.

[62]  G. Hannon,et al.  Drosophila H1 Regulates the Genetic Activity of Heterochromatin by Recruitment of Su(var)3-9 , 2013, Science.

[63]  I. Zhimulev,et al.  Su(UR)ES: a gene suppressing DNA underreplication in intercalary and pericentric heterochromatin of Drosophila melanogaster polytene chromosomes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[64]  K. Johansen,et al.  Reduced Levels of Su(var)3-9 But Not Su(var)2-5 (HP1) Counteract the Effects on Chromatin Structure and Viability in Loss-of-Function Mutants of the JIL-1 Histone H3S10 Kinase , 2007, Genetics.

[65]  Prim B. Singh,et al.  Conservation of Heterochromatin Protein 1 Function , 2000, Molecular and Cellular Biology.

[66]  Aki Minoda,et al.  Double-Strand Breaks in Heterochromatin Move Outside of a Dynamic HP1a Domain to Complete Recombinational Repair , 2011, Cell.

[67]  E. N. Andreyeva,et al.  Interaction between the Drosophila heterochromatin proteins SUUR and HP1 , 2008, Journal of Cell Science.

[68]  G. Korge,et al.  Umbrea, a chromo shadow domain protein in Drosophila melanogaster heterochromatin, interacts with Hip, HP1 and HOAP , 2009, Chromosome Research.

[69]  Guillaume J. Filion,et al.  A network model of the molecular organization of chromatin in Drosophila. , 2013, Molecular cell.

[70]  S. White,et al.  The Chromatin-Remodeling Factor FACT Contributes to Centromeric Heterochromatin Independently of RNAi , 2007, Current Biology.

[71]  Stephen Rea,et al.  Central role of Drosophila SU(VAR)3–9 in histone H3‐K9 methylation and heterochromatic gene silencing , 2002, The EMBO journal.

[72]  A. Desai,et al.  A Combined Approach for the Localization and Tandem Affinity Purification of Protein Complexes from Metazoans , 2005, Science's STKE.

[73]  M. Botchan,et al.  Distinct Cytoplasmic and Nuclear Fractions of Drosophila Heterochromatin Protein 1: Their Phosphorylation Levels and Associations with Origin Recognition Complex Proteins , 1998, The Journal of cell biology.

[74]  Marc Ferrer,et al.  Median Absolute Deviation to Improve Hit Selection for Genome-Scale RNAi Screens , 2008, Journal of biomolecular screening.

[75]  G. Almouzni,et al.  The HP1–p150/CAF-1 interaction is required for pericentric heterochromatin replication and S-phase progression in mouse cells , 2008, Nature Structural &Molecular Biology.

[76]  Alexey I Nesvizhskii,et al.  Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. , 2002, Analytical chemistry.

[77]  S. Jentsch,et al.  PCNA, the Maestro of the Replication Fork , 2007, Cell.

[78]  Andrew R. Bassett,et al.  The Chromatin Remodelling Factor dATRX Is Involved in Heterochromatin Formation , 2008, PloS one.

[79]  M. Gatti,et al.  The Drosophila modigliani (moi) gene encodes a HOAP-interacting protein required for telomere protection , 2009, Proceedings of the National Academy of Sciences.

[80]  B. Alberts,et al.  Heterochromatin protein 1 distribution during development and during the cell cycle in Drosophila embryos. , 1995, Journal of cell science.

[81]  Jesse J. Lipp,et al.  Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin , 2005, Nature.

[82]  W. Gerlach,et al.  Fine structure and evolution of DNA in heterochromatin. , 1978, Cold Spring Harbor symposia on quantitative biology.

[83]  M. Gatti,et al.  Genetic and molecular analysis of wings apart-like (wapl), a gene controlling heterochromatin organization in Drosophila melanogaster. , 2000, Genetics.

[84]  A. Brehm,et al.  The Drosophila methyl-DNA binding protein MBD2/3 interacts with the NuRD complex via p55 and MI-2 , 2004, BMC Molecular Biology.

[85]  D. Brutlag,et al.  One of the copia genes is adjacent to satellite DNA in Drosophila melanogaster , 1978, Cell.

[86]  T. Duke,et al.  Conformational spread: the propagation of allosteric states in large multiprotein complexes. , 2004, Annual review of biophysics and biomolecular structure.

[87]  G. Karpen,et al.  Heterochromatic Genome Stability Requires Regulators of Histone H3 K9 Methylation , 2009, PLoS genetics.

[88]  Xinxian Deng,et al.  Coordinated Regulation of Heterochromatic Genes in Drosophila melanogaster Males , 2009, Genetics.

[89]  R. Aebersold,et al.  A statistical model for identifying proteins by tandem mass spectrometry. , 2003, Analytical chemistry.

[90]  S. Elgin,et al.  Heterochromatin protein 2 interacts with Nap-1 and NURF: a link between heterochromatin-induced gene silencing and the chromatin remodeling machinery in Drosophila. , 2006, Biochemistry.

[91]  J. Larsson,et al.  HP1a, Su(var)3-9, SETDB1 and POF stimulate or repress gene expression depending on genomic position, gene length and expression pattern in Drosophila melanogaster , 2013, Nucleic acids research.

[92]  H. Madhani,et al.  Chromodomain-mediated oligomerization of HP1 suggests a nucleosome-bridging mechanism for heterochromatin assembly. , 2011, Molecular cell.

[93]  Oliver Dürr,et al.  Robust Hit Identification by Quality Assurance and Multivariate Data Analysis of a High-Content, Cell-Based Assay , 2007, Journal of biomolecular screening.

[94]  Kevin A. Burns,et al.  Proneural and abdominal Hox inputs synergize to promote sensory organ formation in the Drosophila abdomen. , 2010, Developmental biology.

[95]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[96]  P. Spierer,et al.  The genomic silencing of position-effect variegation in Drosophila melanogaster: interaction between the heterochromatin-associated proteins Su(var)3-7 and HP1. , 2000, Journal of cell science.

[97]  G. Karpen,et al.  Drosophila ribosomal RNA genes function as an X-Y pairing site during male meiosis , 1990, Cell.

[98]  J. Lis,et al.  P-TEFb kinase recruitment and function at heat shock loci. , 2000, Genes & development.

[99]  Dominik Handler,et al.  The Genetic Makeup of the Drosophila piRNA Pathway , 2013, Molecular cell.

[100]  Julian Mintseris,et al.  A Protein Complex Network of Drosophila melanogaster , 2011, Cell.

[101]  M. Scott,et al.  The Drosophila kismet gene is related to chromatin-remodeling factors and is required for both segmentation and segment identity. , 1999, Development.

[102]  B. Garcia,et al.  Heterochromatin Protein 1 Is Extensively Decorated with Histone Code-like Post-translational Modifications * , 2009, Molecular & Cellular Proteomics.

[103]  H. Richardson,et al.  The Ecdysone-inducible zinc-finger transcription factor Crol regulates Wg transcription and cell cycle progression in Drosophila , 2008, Development.

[104]  Anne E Carpenter,et al.  Journal of Biomolecular Screening Screening Cellular Feature Measurements for Image-based Assay Development , 2022 .

[105]  José A. Dianes,et al.  2016 update of the PRIDE database and its related tools , 2016, Nucleic Acids Res..

[106]  A. Hofmann,et al.  The winged-helix transcription factor JUMU is a haplo-suppressor/triplo-enhancer of PEV in various tissues but exhibits reverse PEV effects in the brain of Drosophila melanogaster , 2009, Chromosome Research.

[107]  G. Orphanides,et al.  The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins , 1999, Nature.

[108]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[109]  T. Grigliatti,et al.  Telomeric Position Effect—A Third Silencing Mechanism in Eukaryotes , 2008, PloS one.

[110]  O. Demakova,et al.  Dynamics of the sub-nuclear distribution of Modulo and the regulation of position-effect variegation by nucleolus in Drosophila. , 1998, Journal of cell science.

[111]  J. Birchler,et al.  The Lighten up (Lip) gene of Drosophila melanogaster, a modifier of retroelement expression, position effect variegation and white locus insertion alleles. , 1994, Genetics.

[112]  M. Gatti,et al.  The Drosophila HOAP protein is required for telomere capping , 2003, Nature Cell Biology.

[113]  Karl Mechtler,et al.  Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins , 2001, Nature.

[114]  E. Nicolas,et al.  Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases. , 2002, Nucleic acids research.

[115]  A. D. L. de la Cruz,et al.  Stepwise Evolution of Essential Centromere Function in a Drosophila Neogene , 2013, Science.

[116]  T. Zhao,et al.  Phosphorylation of Heterochromatin Protein 1 by Casein Kinase II Is Required for Efficient Heterochromatin Binding inDrosophila * , 1999, The Journal of Biological Chemistry.

[117]  Dan V. Nicolau,et al.  Conformational Spread as a Mechanism for Cooperativity in the Bacterial Flagellar Switch , 2010, Science.

[118]  Yiannis A. Savva,et al.  RNA editing regulates transposon-mediated heterochromatic gene silencing , 2013, Nature Communications.

[119]  Patrick England,et al.  Tethering of HP1 proteins to chromatin is relieved by phosphoacetylation of histone H3 , 2004, EMBO reports.

[120]  Andrew J. Wilson,et al.  Hdac3 is essential for the maintenance of chromatin structure and genome stability. , 2010, Cancer cell.

[121]  N. Tolia,et al.  Argonaute Slicing Is Required for Heterochromatic Silencing and Spreading , 2006, Science.

[122]  James B. Brown,et al.  Diversity and dynamics of the Drosophila transcriptome , 2014, Nature.

[123]  I. Vetter,et al.  A pair of centromeric proteins mediates reproductive isolation in Drosophila species. , 2013, Developmental cell.

[124]  R. Allshire,et al.  Requirement of Heterochromatin for Cohesion at Centromeres , 2001, Science.

[125]  G. Karpen,et al.  Genetics of P-element transposition into Drosophila melanogaster centric heterochromatin. , 2003, Genetics.

[126]  Sarah C R Elgin,et al.  Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. , 2013, Cold Spring Harbor perspectives in biology.

[127]  N. Perrimon,et al.  A new enhancer of position-effect variegation in Drosophila melanogaster encodes a putative RNA helicase that binds chromosomes and is regulated by the cell cycle. , 1997, Genetics.

[128]  V. Corces,et al.  The role of histone H2Av variant replacement and histone H4 acetylation in the establishment of Drosophila heterochromatin. , 2005, Genes & development.

[129]  G. Reuter,et al.  The heterochromatin-associated protein HP-1 is an essential protein in Drosophila with dosage-dependent effects on position-effect variegation. , 1992, Genetics.

[130]  T. Miki,et al.  Epigenetic silencing of core histone genes by HERS in Drosophila. , 2012, Molecular cell.

[131]  Ira M. Hall,et al.  Regulation of Heterochromatic Silencing and Histone H3 Lysine-9 Methylation by RNAi , 2002, Science.

[132]  B. Wakimoto,et al.  Beyond the Nucleosome: Epigenetic Aspects of Position–Effect Variegation in Drosophila , 1998, Cell.

[133]  Aideen Long,et al.  Statistical methods for analysis of high-throughput RNA interference screens , 2009, Nature Methods.

[134]  M. Botchan,et al.  Association of the Origin Recognition Complex with Heterochromatin and HP1 in Higher Eukaryotes , 1997, Cell.

[135]  H. Kimura,et al.  Human POGZ modulates dissociation of HP1α from mitotic chromosome arms through Aurora B activation , 2010, Nature Cell Biology.

[136]  Johannes E. Schindelin,et al.  The ImageJ ecosystem: An open platform for biomedical image analysis , 2015, Molecular reproduction and development.

[137]  D. Kioussis,et al.  HP 1-beta is required for development of the cerebral neocortex and neuromuscular junctions , 2008 .

[138]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[139]  J. Birchler,et al.  Mutation in P0, a dual function ribosomal protein/apurinic/apyrimidinic endonuclease, modifies gene expression and position effect variegation in Drosophila. , 1998, Genetics.

[140]  T. Grigliatti,et al.  Genes which suppress position-effect variegation in Drosophila melanogaster are clustered , 1983, Molecular and General Genetics MGG.

[141]  A. Spradling,et al.  The Drosophila P68 RNA helicase regulates transcriptional deactivation by promoting RNA release from chromatin. , 2006, Genes & development.

[142]  P. Schedl,et al.  Drosophila argonaute-2 is required early in embryogenesis for the assembly of centric/centromeric heterochromatin, nuclear division, nuclear migration, and germ-cell formation. , 2005, Genes & development.

[143]  S. Elgin,et al.  The HP1a Disordered C Terminus and Chromo Shadow Domain Cooperate to Select Target Peptide Partners , 2011, Chembiochem : a European journal of chemical biology.

[144]  Jiahuai Han,et al.  The Human SPT20-Containing SAGA Complex Plays a Direct Role in the Regulation of Endoplasmic Reticulum Stress-Induced Genes , 2008, Molecular and Cellular Biology.

[145]  C. Thummel,et al.  Drosophila HNF4 regulates lipid mobilization and beta-oxidation. , 2009, Cell metabolism.

[146]  A. Andrews,et al.  Quantitating the Specificity and Selectivity of Gcn5-Mediated Acetylation of Histone H3 , 2013, PloS one.

[147]  G. Maul,et al.  The mammalian heterochromatin protein 1 binds diverse nuclear proteins through a common motif that targets the chromoshadow domain. , 2005, Biochemical and biophysical research communications.

[148]  J. C. Eissenberg,et al.  Increased phosphorylation of HP1, a heterochromatin-associated protein of Drosophila, is correlated with heterochromatin assembly. , 1994, The Journal of biological chemistry.

[149]  G. Korge,et al.  Domina (Dom), a new Drosophila member of the FKH/WH gene family, affects morphogenesis and is a suppressor of position-effect variegation , 2000, Mechanisms of Development.

[150]  S. Henikoff,et al.  The HP1 chromo shadow domain binds a consensus peptide pentamer , 2000, Current Biology.

[151]  Polina Golland,et al.  Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning , 2009, Proceedings of the National Academy of Sciences.

[152]  B. Stillman,et al.  Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. , 1999, Molecular cell.

[153]  K. Ahmad,et al.  Perturbation Analysis of Heterochromatin-Mediated Gene Silencing and Somatic Inheritance , 2010, PLoS genetics.

[154]  M. Washburn,et al.  Analysis of the heterochromatin protein 1 (HP1) interactome in Drosophila. , 2014, Journal of proteomics.

[155]  T. Sugiyama,et al.  RITS acts in cis to promote RNA interference–mediated transcriptional and post-transcriptional silencing , 2004, Nature Genetics.

[156]  S. Elgin,et al.  Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[157]  H. Salz,et al.  The Drosophila sex determination gene snf encodes a nuclear protein with sequence and functional similarity to the mammalian U1A snRNP protein. , 1994, Genes & development.

[158]  S. Wolin,et al.  La proteins from Drosophila melanogaster and Saccharomyces cerevisiae: a yeast homolog of the La autoantigen is dispensable for growth , 1994, Molecular and cellular biology.

[159]  N. Perrimon,et al.  Comparative analysis of argonaute-dependent small RNA pathways in Drosophila. , 2008, Molecular cell.

[160]  R. Kellum,et al.  Drosophila heterochromatin protein 1 (HP1)/origin recognition complex (ORC) protein is associated with HP1 and ORC and functions in heterochromatin-induced silencing. , 2001, Molecular biology of the cell.

[161]  S. Elgin,et al.  Heterochromatin protein 2 (HP2), a partner of HP1 in Drosophila heterochromatin , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[162]  T. Steitz,et al.  Drosophila H1 Regulates the Genetic Activity of Heterochromatin by Recruitment of Su(var)3-9 , 2013 .

[163]  Rudkin Gt Non replicating DNA in Drosophila. , 1969 .

[164]  C. Allis,et al.  Heterochromatin protein 1 binds to nucleosomes and DNA in vitro. , 2000, The Journal of biological chemistry.

[165]  S. Hanes,et al.  The Bin3 RNA methyltransferase is required for repression of caudal translation in the Drosophila embryo. , 2011, Developmental biology.

[166]  Akiko Sakai,et al.  The XNP remodeler targets dynamic chromatin in Drosophila , 2009, Proceedings of the National Academy of Sciences.

[167]  Seth D Findley,et al.  Drosophila PIWI associates with chromatin and interacts directly with HP1a. , 2007, Genes & development.

[168]  I. Vetter,et al.  The RNA Helicase Rm62 Cooperates with SU(VAR)3-9 to Re-Silence Active Transcription in Drosophila melanogaster , 2011, PloS one.

[169]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[170]  O. Cuvier,et al.  The AT-Hook Protein D1 Is Essential for Drosophila melanogaster Development and Is Implicated in Position-Effect Variegation , 2002, Molecular and Cellular Biology.

[171]  M. Myers,et al.  Crystal structure of the HP1-EMSY complex reveals an unusual mode of HP1 binding. , 2006, Structure.

[172]  Jonathan Preall,et al.  Blanks, a nuclear siRNA/dsRNA-binding complex component, is required for Drosophila spermiogenesis , 2011, Proceedings of the National Academy of Sciences.

[173]  E. N. Andreyeva,et al.  DNA copy-number control through inhibition of replication fork progression. , 2014, Cell reports.

[174]  Lani F. Wu,et al.  Image-based multivariate profiling of drug responses from single cells , 2007, Nature Methods.

[175]  K. Nishikura Functions and regulation of RNA editing by ADAR deaminases. , 2010, Annual review of biochemistry.