Streams collision as possible precursor of double tidal disruption events

The rate of tidal disruption events (TDEs) can vary by orders of magnitude depending on the environment and the mechanism that launches the stars towards the black hole's vicinity. For the largest rates, two disruptions can take place shortly one after the other in a double TDE. In this case, the two debris streams may collide with each other before falling back to the black hole resulting in an electromagnetic emission that is absent from single TDEs. We analytically evaluate the conditions for this streams collision to occur. It requires that the difference in pericenter location between the two disruptions makes up for the time delay between them. In addition, the width of the streams must compensate for the vertical offset induced by the inclination of their orbital planes. If the double TDE happens following the tidal separation of a binary, we find that the streams can collide with a probability as high as $44\%$. We validate our analytical conditions for streams collision through hydrodynamical simulations and find that the associated shocks heat the gas significantly. If photons are able to rapidly escape, a burst of radiation ensues lasting a few days with a luminosity $\sim 10^{43}\, \rm erg\, s^{-1}$, most likely in the optical band. This signal represents a precursor to the main flare of TDEs that could in particular be exploited to determine the efficiency of disc formation from the stellar debris.

[1]  E. Quataert,et al.  Stellar Binaries Incident on Supermassive Black Hole Binaries: Implications for Double Tidal Disruption Events, Calcium-rich Transients, and Hypervelocity Stars , 2018, The Astrophysical Journal.

[2]  C. Nixon,et al.  Dynamical Properties of Eccentric Nuclear Disks: Stability, Longevity, and Implications for Tidal Disruption Rates in Post-merger Galaxies , 2017, 1705.03462.

[3]  Daniel J. Price,et al.  Phantom: A Smoothed Particle Hydrodynamics and Magnetohydrodynamics Code for Astrophysics , 2017, Publications of the Astronomical Society of Australia.

[4]  E. Phinney,et al.  Gravitational Wave and X-ray Signals from Stellar Disruption by a Massive Black Hole , 2018 .

[5]  S. Gezari,et al.  X-Ray Brightening and UV Fading of Tidal Disruption Event ASASSN-15oi , 2017, 1712.03968.

[6]  K. Nomoto,et al.  Does Explosive Nuclear Burning Occur in Tidal Disruption Events of White Dwarfs by Intermediate-mass Black Holes? , 2017, 1703.08278.

[7]  J. Cannizzo,et al.  Optical/UV-to-X-Ray Echoes from the Tidal Disruption Flare ASASSN-14li , 2017, 1703.07024.

[8]  S. Gezari,et al.  Revisiting Optical Tidal Disruption Events with iPTF16axa , 2017, 1703.01299.

[9]  P. Armitage,et al.  Tidal disruption events from supermassive black hole binaries , 2016, 1608.05711.

[10]  K. Alexander,et al.  XMMSL1 J074008.2-853927: a tidal disruption event with thermal and non-thermal components , 2016, 1610.01788.

[11]  U. California,et al.  The Post-starburst Evolution of Tidal Disruption Event Host Galaxies , 2016, 1609.04755.

[12]  J. Guillochon,et al.  PROMPT RADIATION AND MASS OUTFLOWS FROM THE STREAM–STREAM COLLISIONS OF TIDAL DISRUPTION EVENTS , 2016, 1603.07733.

[13]  J. Prieto,et al.  ASASSN-15oi: a rapidly evolving, luminous tidal disruption event at 216 Mpc , 2016, 1602.01088.

[14]  M. Colpi,et al.  Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes , 2016, 1601.05478.

[15]  Las Cumbres Observatory Global Telescope,et al.  TIDAL DISRUPTION EVENTS PREFER UNUSUAL HOST GALAXIES , 2016, 1601.04705.

[16]  S. Rosswog,et al.  Magnetohydrodynamical simulations of a deep tidal disruption in general relativity , 2015, 1512.04865.

[17]  R. Trotta,et al.  BAHAMAS: NEW ANALYSIS OF TYPE Ia SUPERNOVAE REVEALS INCONSISTENCIES WITH STANDARD COSMOLOGY , 2015, 1510.05954.

[18]  A. B. Danilet,et al.  Six months of multiwavelength follow-up of the tidal disruption candidate asassn-14li and implied tde rates from asas-sn , 2015, 1507.01598.

[19]  B. Metzger,et al.  A bright year for tidal disruptions , 2015, 1506.03453.

[20]  A. Loeb,et al.  Circularization of Tidally Disrupted Stars around Spinning Supermassive Black Holes , 2015, 1501.05207.

[21]  Daniel J. Price,et al.  Disc formation from tidal disruptions of stars on eccentric orbits by Schwarzschild black holes , 2015, 1501.04635.

[22]  B. Metzger,et al.  Rates of stellar tidal disruption as probes of the supermassive black hole mass function , 2014, 1410.7772.

[23]  D. Kasen,et al.  THE X-RAY THROUGH OPTICAL FLUXES AND LINE STRENGTHS OF TIDAL DISRUPTION EVENTS , 2015, 1510.08454.

[24]  D. Kasen,et al.  OPTICAL THERMONUCLEAR TRANSIENTS FROM TIDAL COMPRESSION OF WHITE DWARFS AS TRACERS OF THE LOW END OF THE MASSIVE BLACK HOLE MASS FUNCTION , 2015, 1508.02399.

[25]  M. Miller,et al.  SOFT X-RAY TEMPERATURE TIDAL DISRUPTION EVENTS FROM STARS ON DEEP PLUNGING ORBITS , 2015, 1507.04333.

[26]  T. Piran,et al.  DISK FORMATION VERSUS DISK ACCRETION—WHAT POWERS TIDAL DISRUPTION EVENTS? , 2015 .

[27]  Y. Levin,et al.  DOUBLE TIDAL DISRUPTIONS IN GALACTIC NUCLEI , 2015, 1504.02787.

[28]  P. Laguna,et al.  ULTRA-CLOSE ENCOUNTERS OF STARS WITH MASSIVE BLACK HOLES: TIDAL DISRUPTION EVENTS WITH PROMPT HYPERACCRETION , 2015, 1502.05740.

[29]  James Guillochon,et al.  A DARK YEAR FOR TIDAL DISRUPTION EVENTS , 2015, 1501.05306.

[30]  T. Piran,et al.  GENERAL RELATIVISTIC HYDRODYNAMIC SIMULATION OF ACCRETION FLOW FROM A STELLAR TIDAL DISRUPTION , 2015, 1501.04365.

[31]  Hanno Rein,et al.  ias15: a fast, adaptive, high-order integrator for gravitational dynamics, accurate to machine precision over a billion orbits , 2014, 1409.4779.

[32]  J. Prieto,et al.  ASASSN-14ae: a tidal disruption event at 200 Mpc , 2014, 1405.1417.

[33]  Adam A. Miller,et al.  A CONTINUUM OF H- TO He-RICH TIDAL DISRUPTION CANDIDATES WITH A PREFERENCE FOR E+A GALAXIES , 2014, 1405.1415.

[34]  J. Guillochon,et al.  PS1-10jh: THE DISRUPTION OF A MAIN-SEQUENCE STAR OF NEAR-SOLAR COMPOSITION , 2013, 1304.6397.

[35]  D. Merritt Dynamics and Evolution of Galactic Nuclei , 2013 .

[36]  P. Coppi,et al.  THE IMPACT OF BOUND STELLAR ORBITS AND GENERAL RELATIVITY ON THE TEMPORAL BEHAVIOR OF TIDAL DISRUPTION FLARES , 2013, 1303.4837.

[37]  A. Loeb,et al.  Consequences of Strong Compression in Tidal Disruption Events , 2012, 1210.3374.

[38]  A. Loeb,et al.  Finite, Intense Accretion Bursts from Tidal Disruption of Stars on Bound Orbits , 2012, 1210.1333.

[39]  G. Lodato Challenges in the modeling of tidal disruption events lightcurves , 2012, 1211.6109.

[40]  T. Grav,et al.  An ultraviolet–optical flare from the tidal disruption of a helium-rich stellar core , 2012, Nature.

[41]  E. Rossi,et al.  HYPER VELOCITY STARS AND THE RESTRICTED PARABOLIC 3-BODY PROBLEM , 2012 .

[42]  R. Haas,et al.  TIDAL DISRUPTIONS OF WHITE DWARFS FROM ULTRA-CLOSE ENCOUNTERS WITH INTERMEDIATE-MASS SPINNING BLACK HOLES , 2012, 1201.4389.

[43]  H. Rein,et al.  REBOUND: An open-source multi-purpose N-body code for collisional dynamics , 2011, 1110.4876.

[44]  Stephan Rosswog,et al.  A fast recursive coordinate bisection tree for neighbour search and gravity , 2011, 1108.0028.

[45]  Fukun Liu,et al.  TIDAL STELLAR DISRUPTIONS BY MASSIVE BLACK HOLE PAIRS. II. DECAYING BINARIES , 2010, 1012.4466.

[46]  Andrew J. Drake,et al.  OPTICAL DISCOVERY OF PROBABLE STELLAR TIDAL DISRUPTION FLARES , 2010, 1009.1627.

[47]  Walter Dehnen,et al.  Inviscid smoothed particle hydrodynamics , 2010 .

[48]  M. Eracleous,et al.  A TIDAL DISRUPTION FLARE IN A1689 FROM AN ARCHIVAL X-RAY SURVEY OF GALAXY CLUSTERS , 2010, 1008.4140.

[49]  W. Dehnen,et al.  Inviscid SPH , 2010, 1006.1524.

[50]  D. Kasen,et al.  OPTICAL TRANSIENTS FROM THE UNBOUND DEBRIS OF TIDAL DISRUPTION , 2009, 0911.5358.

[51]  J. Luminet,et al.  Relativistic tidal compressions of a star by a massive black hole , 2009, 0910.5362.

[52]  E. Rossi,et al.  HYPERVELOCITY STARS AND THE RESTRICTED PARABOLIC THREE-BODY PROBLEM , 2009, 0911.1136.

[53]  Fukun Liu,et al.  ENHANCED TIDAL DISRUPTION RATES FROM MASSIVE BLACK HOLE BINARIES , 2009, 0904.4481.

[54]  S. Gezari,et al.  LUMINOUS THERMAL FLARES FROM QUIESCENT SUPERMASSIVE BLACK HOLES , 2009, 0904.1596.

[55]  E. Ramirez-Ruiz,et al.  TIDAL DISRUPTION AND IGNITION OF WHITE DWARFS BY MODERATELY MASSIVE BLACK HOLES , 2008, 0808.2143.

[56]  James Binney,et al.  Galactic Dynamics: Second Edition , 2008 .

[57]  D. Kasen,et al.  THREE-DIMENSIONAL SIMULATIONS OF TIDALLY DISRUPTED SOLAR-TYPE STARS AND THE OBSERVATIONAL SIGNATURES OF SHOCK BREAKOUT , 2008, 0811.1370.

[58]  University of Cambridge,et al.  Stellar disruption by a supermassive black hole: is the light curve really proportional to t -5/3 ? , 2008, 0810.1288.

[59]  R. D. Saxton,et al.  Evolution of tidal disruption candidates discovered by XMM-Newton , 2008, 0807.4452.

[60]  E. Ramirez-Ruiz,et al.  Atypical Thermonuclear Supernovae from Tidally Crushed White Dwarfs , 2007, 0712.2513.

[61]  M. Brassart,et al.  Shock waves in tidally compressed stars by massive black holes , 2007, 0707.2476.

[62]  Daniel J. Price SPLASH: An Interactive Visualisation Tool for Smoothed Particle Hydrodynamics Simulations , 2007, Publications of the Astronomical Society of Australia.

[63]  M. Hobson,et al.  General Relativity: An Introduction for Physicists , 2006 .

[64]  M. Hobson,et al.  General Relativity: Index , 2006 .

[65]  D. Merritt,et al.  Chaotic Loss Cones and Black Hole Fueling , 2004 .

[66]  E. Sterl Phinney,et al.  Gravitational Waves and X-Ray Signals from Stellar Disruption by a Massive Black Hole , 2004, astro-ph/0404173.

[67]  G. Hasinger,et al.  A Huge Drop in the X-Ray Luminosity of the Nonactive Galaxy RX J1242.6–1119A, and the First Postflare Spectrum: Testing the Tidal Disruption Scenario , 2004, astro-ph/0402468.

[68]  D. Merritt,et al.  Revised Rates of Stellar Disruption in Galactic Nuclei , 2003, astro-ph/0305493.

[69]  D. Merritt,et al.  Chaotic Loss Cones, Black Hole Fueling and the M-Sigma Relation , 2003, astro-ph/0302296.

[70]  S. Tremaine,et al.  Rates of tidal disruption of stars by massive central black holes , 1999, astro-ph/9902032.

[71]  D. Syer,et al.  Tidal disruption rates of stars in observed galaxies , 1998, astro-ph/9812389.

[72]  A. Loeb,et al.  Optical Appearance of the Debris of a Star Disrupted by a Massive Black Hole , 1997, astro-ph/9703079.

[73]  C. Kochanek The Aftermath of tidal disruption: The Dynamics of thin gas streams , 1994 .

[74]  Charles R. Evans,et al.  The tidal disruption of a star by a massive black hole , 1989 .

[75]  Mark R. Morris,et al.  The center of the galaxy , 1989 .

[76]  E. S. Phinney,et al.  MANIFESTATIONS OF A MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 1989 .

[77]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[78]  Charles H. Townes,et al.  The nature of the central parsec of the Galaxy , 1982 .

[79]  Albert A. Michelson On the Conditions which Affect the Spectro-Photography of the Sun , 1895 .

[80]  M. Johnson J.P. Radcliffe, Esq., Rudding Park, Yorkshire , 1856 .

[81]  Hansen On the Construction of New Lunar Tables, and on some points in the Lunar Theory depending on the Conformation of the Moon with respect to its Centre of Gravity , 1854 .