Frequency response of primary resonance of electrostatically actuated CNT cantilevers

[1]  Dumitru I. Caruntu,et al.  Reduced order model of parametric resonance of electrostatically actuated MEMS cantilever resonators , 2014 .

[2]  Kyle N. Taylor,et al.  Bifurcation Type Change of AC Electrostatically Actuated MEMS Resonators due to DC Bias , 2014 .

[3]  Angelo Luongo,et al.  Mathematical Models of Beams and Cables: Luongo/Mathematical Models of Beams and Cables , 2013 .

[4]  Soo-il Lee,et al.  Theoretical investigation of nonlinear resonances in a carbon nanotube cantilever with a tip-mass under electrostatic excitation , 2013 .

[5]  Dumitru I. Caruntu,et al.  Voltage–amplitude response of alternating current near half natural frequency electrostatically actuated MEMS resonators , 2013 .

[6]  Martin W. Knecht,et al.  Reduced Order Model Analysis of Frequency Response of Alternating Current Near Half Natural Frequency Electrostatically Actuated MEMS Cantilevers , 2013 .

[7]  Giuseppe Rega,et al.  Bifurcation, response scenarios and dynamic integrity in a single-mode model of noncontact atomic force microscopy , 2013 .

[8]  P. Scherer Equations of Motion , 2013 .

[9]  G. Groeseneken,et al.  Towards CMOS-compatible single-walled carbon nanotube resonators , 2013 .

[10]  O. Regev,et al.  Carbon nanotubes as nanocarriers in medicine , 2012 .

[11]  M. Mohammadi,et al.  An investigation on primary resonance phenomena of elastic medium based single walled carbon nanotubes , 2012 .

[12]  Jie Yang,et al.  Resonance frequency response of geometrically nonlinear micro-switches under electrical actuation , 2012 .

[13]  Yury Gogotsi,et al.  Physiological validation of cell health upon probing with carbon nanotube endoscope and its benefit for single-cell interrogation. , 2012, Nanomedicine : nanotechnology, biology, and medicine.

[14]  Zhong Hu,et al.  Mechanical property evaluation of single-walled carbon nanotubes by finite element modeling , 2012 .

[15]  S. E. Khadem,et al.  Nonlinear vibration and stability analysis of a double-walled carbon nanotube under electrostatic actuation , 2012 .

[16]  J. Puszynski,et al.  Combustion synthesis and characterization of nickel aluminide–carbon nanotube composites , 2012 .

[17]  Xiaoke Zhang,et al.  Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. , 2012, Biomaterials.

[18]  B. Kumar,et al.  Poly(lactic acid)–multi-wall carbon nanotube conductive biopolymer nanocomposite vapour sensors , 2012 .

[19]  B. Pratiher Tuning the Nonlinear Behaviour of Resonant MEMS Sensors Actuated Electrically , 2012 .

[20]  Seon-Uck Paek,et al.  A study of carbon-nanotube-based nanoelectromechanical resonators tuned by shear strain , 2012 .

[21]  H. Ouakad,et al.  Dynamic response of slacked single-walled carbon nanotube resonators , 2012 .

[22]  Wenchuan Wang,et al.  Metal (Pd, Pt)-decorated carbon nanotubes for CO and NO sensing , 2011 .

[23]  Martin W. Knecht,et al.  ON NONLINEAR RESPONSE NEAR-HALF NATURAL FREQUENCY OF ELECTROSTATICALLY ACTUATED MICRORESONATORS , 2011 .

[24]  Mohammad I. Younis,et al.  Natural frequencies and mode shapes of initially curved carbon nanotube resonators under electric excitation , 2011 .

[25]  Masaaki Nagatsu,et al.  Carbon nanotubes as adsorbents in environmental pollution management: A review , 2011 .

[26]  M. Aydogdu,et al.  Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity , 2011 .

[27]  A. Bachtold,et al.  Carbon nanotube electromechanical resonator for ultrasensitive mass/force sensing , 2010 .

[28]  Huixin He,et al.  DNA and carbon nanotubes as medicine. , 2010, Advanced drug delivery reviews.

[29]  H. Ouakad,et al.  Nonlinear dynamics of a resonant gas sensor , 2010 .

[30]  Mohammad I. Younis,et al.  Nonlinear Dynamics of Electrically Actuated Carbon Nanotube Resonators , 2010 .

[31]  S. K. Georgantzinos,et al.  Vibration analysis of multi-walled carbon nanotubes using a spring–mass based finite element model , 2009 .

[32]  B. Reig,et al.  Nonlinear dynamics of nanomechanical beam resonators: improving the performance of NEMS-based sensors , 2009, Nanotechnology.

[33]  M. Rasekh,et al.  Nonlinear vibration and stability analysis of axially loaded embedded carbon nanotubes conveying fluid , 2009 .

[34]  K. Tserpes,et al.  Equivalent beams for carbon nanotubes , 2008 .

[35]  Davide Spinello,et al.  REDUCED-ORDER MODELS FOR MICROELECTROMECHANICAL RECTANGULAR AND CIRCULAR PLATES INCORPORATING THE CASIMIR FORCE , 2008 .

[36]  Jung-Chang Hsu,et al.  Resonance frequency of chiral single-walled carbon nanotubes using Timoshenko beam theory , 2008 .

[37]  Henk Nijmeijer,et al.  Modelling the dynamics of a MEMS resonator : simulations and experiments , 2008 .

[38]  Oded Gottlieb,et al.  Nonlinear dynamics, stability and control of the scan process in noncontacting atomic force microscopy , 2008 .

[39]  Ali H. Nayfeh,et al.  Dynamic pull-in phenomenon in MEMS resonators , 2007 .

[40]  R. Gibson,et al.  VIBRATIONS OF CARBON NANOTUBES AND THEIR COMPOSITES: A REVIEW , 2007 .

[41]  Vijay K. Varadan,et al.  Vibration of carbon nanotubes studied using nonlocal continuum mechanics , 2006 .

[42]  A. Nayfeh,et al.  Primary resonance excitation of electrically actuated clamped circular plates , 2004 .

[43]  N. Aluru,et al.  Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches , 2002 .

[44]  M. Hodak,et al.  Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential , 2000 .

[45]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[46]  Fabrizio Vestroni,et al.  On nonlinear dynamics of planar shear indeformable beams , 1986 .

[47]  鈴木 増雄 A. H. Nayfeh and D. T. Mook: Nonlinear Oscillations, John Wiley, New York and Chichester, 1979, xiv+704ページ, 23.5×16.5cm, 10,150円. , 1980 .

[48]  S. Orszag,et al.  Advanced Mathematical Methods For Scientists And Engineers , 1979 .

[49]  M. R. Silva,et al.  Nonlinear Flexural-Flexural-Torsional Dynamics of Inextensional Beams. I. Equations of Motion , 1978 .