Estimating burn severity and carbon emissions from a historic megafire in boreal forests of China.

[1]  Hong S. He,et al.  Tree-Lists Estimation for Chinese Boreal Forests by Integrating Weibull Diameter Distributions with MODIS-Based Forest Attributes from kNN Imputation , 2018, Forests.

[2]  E. N. Stavros,et al.  Deconstructing the King megafire. , 2018, Ecological applications : a publication of the Ecological Society of America.

[3]  Feng R. Zhao,et al.  Assessing the Effects of Fire Disturbances and Timber Management on Carbon Storage in the Greater Yellowstone Ecosystem , 2018, Environmental Management.

[4]  Hong S. He,et al.  Integrating forest inventory data and MODIS data to map species-level biomass in Chinese boreal forests , 2018 .

[5]  J. Randerson,et al.  Global fire emissions estimates during 1997–2016 , 2017 .

[6]  H. Balzter,et al.  Quantifying biomass consumption and carbon release from the California Rim fire by integrating airborne LiDAR and Landsat OLI data , 2017, Journal of geophysical research. Biogeosciences.

[7]  Philippe Ciais,et al.  Inventory of anthropogenic methane emissions in mainland China from 1980 to 2010 , 2016 .

[8]  David P. Roy,et al.  The global Landsat archive: Status, consolidation, and direction , 2016 .

[9]  Yulong Bao,et al.  Estimates of Wildfire Emissions in Boreal Forests of China , 2016 .

[10]  Zhiliang Zhu,et al.  The spatial variation in forest burn severity in Heilongjiang Province, China , 2016, Natural Hazards.

[11]  Tetsuro Sakai,et al.  Mapping a burned forest area from Landsat TM data by multiple methods , 2016 .

[12]  Hendrik Poorter,et al.  How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents , 2015, The New phytologist.

[13]  F. Siegert,et al.  Biomass burning fuel consumption rates: a field measurement database , 2014 .

[14]  Scott L. Powell,et al.  Bringing an ecological view of change to Landsat‐based remote sensing , 2014 .

[15]  Scott L. Goodrick,et al.  Wildland fire emissions, carbon, and climate: Wildfire-climate interactions , 2014 .

[16]  Toon Spanhove,et al.  Burned Area Detection and Burn Severity Assessment of a Heathland Fire in Belgium Using Airborne Imaging Spectroscopy (APEX) , 2014, Remote. Sens..

[17]  M. Adams,et al.  Mega-fires, tipping points and ecosystem services: Managing forests and woodlands in an uncertain future , 2013 .

[18]  Jerry Williams,et al.  Exploring the onset of high-impact mega-fires through a forest land management prism , 2013 .

[19]  Hu Haiqing,et al.  Estimation of carbon emissions due to forest fire in Daxing’an Mountains from 1965 to 2010: Estimation of carbon emissions due to forest fire in Daxing’an Mountains from 1965 to 2010 , 2013 .

[20]  J. Randerson,et al.  Global burned area and biomass burning emissions from small fires , 2012 .

[21]  Michael A. Wulder,et al.  Opening the archive: How free data has enabled the science and monitoring promise of Landsat , 2012 .

[22]  Yu Chang,et al.  Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China , 2012 .

[23]  Zhe Zhu,et al.  Object-based cloud and cloud shadow detection in Landsat imagery , 2012 .

[24]  Jie Zhang,et al.  CO emissions in China: Uncertainties and implications of improved energy efficiency and emission control , 2012 .

[25]  Ying Yu,et al.  [Forest carbon rates at different scales in Northeast China forest area]. , 2012, Ying yong sheng tai xue bao = The journal of applied ecology.

[26]  M. Razinger,et al.  Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power , 2011 .

[27]  A. Ito Mega fire emissions in Siberia: potential supply of bioavailable iron from forests to the ocean , 2011 .

[28]  S. K. Akagi,et al.  The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning , 2010 .

[29]  J. Randerson,et al.  Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) , 2010 .

[30]  M. Mack,et al.  Quantifying fire severity, carbon, and nitrogen emissions in Alaska's boreal forest. , 2010, Ecological applications : a publication of the Ecological Society of America.

[31]  G. Asner,et al.  Mapping burn severity and burning efficiency in California using simulation models and Landsat imagery , 2010 .

[32]  M. Krawchuk,et al.  Implications of changing climate for global wildland fire , 2009 .

[33]  Christopher I. Roos,et al.  Fire in the Earth System , 2009, Science.

[34]  M. G. Ryan,et al.  Modeling the effects of fire and climate change on carbon and nitrogen storage in lodgepole pine (Pinus contorta) stands , 2009 .

[35]  George W. Koch,et al.  Carbon protection and fire risk reduction: toward a full accounting of forest carbon offsets , 2008 .

[36]  E. Kasischke,et al.  Evaluation of the composite burn index for assessing fire severity in Alaskan black spruce forests , 2008 .

[37]  Brian Sorbel,et al.  Assessing the differenced normalized burn ratio’s ability to map burn severity in the boreal forest and tundra ecosystems of alaska’s national parks , 2008 .

[38]  Hong S. He,et al.  Historic and current fire regimes in the Great Xing’an Mountains, northeastern China: Implications for long-term forest management , 2008 .

[39]  S. Escuin,et al.  Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images , 2008 .

[40]  B. Law,et al.  Pyrogenic carbon emission from a large wildfire in Oregon, United States , 2007 .

[41]  Jay D. Miller,et al.  Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR) , 2007 .

[42]  J. Randerson,et al.  Interannual variability in global biomass burning emissions from 1997 to 2004 , 2006 .

[43]  Hanqin Tian,et al.  Spatial and temporal patterns of carbon emissions from forest fires in China from 1950 to 2000 , 2006 .

[44]  J. Randerson,et al.  Global estimation of burned area using MODIS active fire observations , 2005 .

[45]  D. Roy,et al.  Characterizing the surface heterogeneity of fire effects using multi‐temporal reflective wavelength data , 2005 .

[46]  D. Roy,et al.  Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data , 2005 .

[47]  Martin J. Wooster,et al.  Testing the potential of multi-spectral remote sensing for retrospectively estimating fire severity in African savannahs , 2005 .

[48]  D. Verbyla,et al.  Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM , 2005 .

[49]  P. Goovaerts,et al.  Uncertainty in estimating carbon emissions from boreal forest fires , 2004 .

[50]  J. Penner,et al.  Global estimates of biomass burning emissions based on satellite imagery for the year 2000 , 2004 .

[51]  Anthony C. Janetos,et al.  Using Remote Sensing to Assess Russian Forest Fire Carbon Emissions , 2002 .

[52]  S. Page,et al.  The amount of carbon released from peat and forest fires in Indonesia during 1997 , 2002, Nature.

[53]  M. Andreae,et al.  Emission of trace gases and aerosols from biomass burning , 2001 .

[54]  Ben Bond-Lamberty,et al.  The influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in north‐eastern China , 2001 .

[55]  C. Peng,et al.  Changes in Forest Biomass Carbon Storage in China Between 1949 and 1998 , 2001, Science.

[56]  C. Sharma,et al.  Biomass and combustion characteristics of secondary mixed deciduous forests in Eastern Ghats of India , 2001 .

[57]  B. Leistikow,et al.  Fire injuries, disasters, and costs from cigarettes and cigarette lights: a global overview. , 2000, Preventive medicine.

[58]  S. Flasse,et al.  Characterizing the spectral-temporal response of burned savannah using in situ spectroradiometry and infrared thermometry , 2000 .

[59]  E. Kasischke,et al.  Estimating release of carbon from 1990 and 1991 forest fires in Alaska , 1995 .

[60]  W. Hargrove,et al.  Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming , 1994 .

[61]  Joel S. Levine,et al.  Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia , 1994 .

[62]  B. Holben,et al.  Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A) , 1992 .

[63]  Norman L. Christensen,et al.  Interpreting the Yellowstone Fires of 1988Ecosystem responses and management implications , 1989 .

[64]  P. Crutzen,et al.  Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning , 1980 .

[65]  O. Edenhofer,et al.  Climate change 2014 : mitigation of climate change , 2014 .

[66]  Russian Federation,et al.  FINDINGS AND IMPLICATIONS FROM A COARSE-SCALE GLOBAL ASSESSMENT OF RECENT SELECTED MEGA-FIRES , 2011 .

[67]  Xuexia Chen,et al.  Estimating aboveground forest biomass carbon and fire consumption in the U.S. Utah High Plateaus using data from the Forest Inventory and Analysis Program, Landsat, and LANDFIRE , 2011 .

[68]  W. Hao,et al.  Chapter 4 Chemical Composition of Wildland Fire Emissions , 2008 .

[69]  Jeffrey G. Masek,et al.  Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) , 2006 .

[70]  Liu Zhandong,et al.  Fire disturbance history in virgin forest in northern region of daxinganling mountains , 1997 .

[71]  J. Levine The Measurement of Trace Emissions and Combustion Characteristics for a Mass Fire , 1991 .