Accurate and efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates via the nonuniform FFT

In this paper, we propose efficient and accurate numerical methods for computing the ground state and dynamics of the dipolar Bose-Einstein condensates utilising a newly developed dipole-dipole interaction (DDI) solver that is implemented with the non-uniform fast Fourier transform (NUFFT) algorithm. We begin with the three-dimensional (3D) Gross-Pitaevskii equation (GPE) with a DDI term and present the corresponding two-dimensional (2D) model under a strongly anisotropic confining potential. Different from existing methods, the NUFFT based DDI solver removes the singularity by adopting the spherical/polar coordinates in Fourier space in 3D/2D, respectively, thus it can achieve spectral accuracy in space and simultaneously maintain high efficiency by making full use of FFT and NUFFT whenever it is necessary and/or needed. Then, we incorporate this solver into existing successful methods for computing the ground state and dynamics of GPE with a DDI for dipolar BEC. Extensive numerical comparisons with existing methods are carried out for computing the DDI, ground states and dynamics of the dipolar BEC. Numerical results show that our new methods outperform existing methods in terms of both accuracy and efficiency.

[1]  Yong Zhang,et al.  On the computation of ground state and dynamics of Schrödinger-Poisson-Slater system , 2011, J. Comput. Phys..

[2]  D. Stamper-Kurn,et al.  Spontaneously modulated spin textures in a dipolar spinor bose-einstein condensate. , 2007, Physical review letters.

[3]  W. Bao,et al.  Mathematical Models and Numerical Methods for Bose-Einstein Condensation , 2012, 1212.5341.

[4]  Bradley,et al.  Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. , 1995, Physical review letters.

[5]  A. Griesmaier,et al.  Bose-Einstein condensation of chromium. , 2005, Physical review letters.

[6]  Seo Ho Youn,et al.  Strongly dipolar Bose-Einstein condensate of dysprosium. , 2011, Physical review letters.

[7]  Luis E. Young-S.,et al.  Fortran and C programs for the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap , 2015, Comput. Phys. Commun..

[8]  Y. P. Chen,et al.  Extreme tunability of interactions in a 7Li Bose-Einstein condensate. , 2008, Physical review letters.

[9]  Hanquan Wang,et al.  Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates , 2010, J. Comput. Phys..

[10]  Weizhu Bao,et al.  Three-dimensional simulation of jet formation in collapsing condensates , 2004 .

[11]  P. Markowich,et al.  NUMERICAL SIMULATION OF TRAPPED DIPOLAR QUANTUM GASES: COLLAPSE STUDIES AND VORTEX DYNAMICS , 2010 .

[12]  A. M. Martin,et al.  Structure formation during the collapse of a dipolar atomic Bose-Einstein condensate , 2008, 0810.2028.

[13]  Masahito Ueda,et al.  d-wave collapse and explosion of a dipolar bose-einstein condensate. , 2008, Physical review letters.

[14]  Yong Zhang,et al.  Exact Artificial Boundary Condition for the Poisson Equation in the Simulation of the 2D Schrödinger-Poisson System , 2014 .

[15]  Christophe Besse,et al.  Communi-cations Computational methods for the dynamics of the nonlinear Schr̈odinger / Gross-Pitaevskii equations , 2013 .

[16]  Tsin-Fu Jiang,et al.  Ground state of the dipolar Bose-Einstein condensate , 2006 .

[17]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[18]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[19]  A. Fetter Rotating trapped Bose-Einstein condensates , 2008, 0801.2952.

[20]  J. Ye,et al.  A High Phase-Space-Density Gas of Polar Molecules , 2008, Science.

[21]  Jens O Andersen Theory of the weakly interacting Bose gas , 2004 .

[22]  I-Liang Chern,et al.  BOSE-EINSTEIN CONDENSATION , 2021, Structural Aspects of Quantum Field Theory and Noncommutative Geometry.

[23]  M. Lewenstein,et al.  The physics of dipolar bosonic quantum gases , 2009, 0905.0386.

[24]  Qiang Du,et al.  Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..

[25]  M. Oberthaler,et al.  Dynamics of Bose-Einstein condensates in optical lattices , 2006 .

[26]  A. Leggett,et al.  Bose-Einstein condensation in the alkali gases: Some fundamental concepts , 2001 .

[27]  Stefano Giovanazzi,et al.  Exact hydrodynamics of a trapped dipolar Bose-Einstein condensate. , 2004, Physical review letters.

[28]  Bernd Fröhlich,et al.  Strong dipolar effects in a quantum ferrofluid , 2007, Nature.

[29]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[30]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[31]  S. L. Cornish,et al.  Collapse times of dipolar Bose-Einstein condensates , 2008, 0809.4294.

[32]  Yanzhi Zhang,et al.  A simple and efficient numerical method for computing the dynamics of rotating Bose-Einstein condensates via a rotating Lagrangian coordinate , 2013, 1305.1378.

[33]  Weizhu Bao,et al.  Gross-Pitaevskii-Poisson Equations for Dipolar Bose-Einstein Condensate with Anisotropic Confinement , 2012, SIAM J. Math. Anal..

[34]  M. Baranov,et al.  Theoretical progress in many-body physics with ultracold dipolar gases , 2008 .

[35]  Hermann Haken,et al.  Molecular physics and elements of quantum chemistry , 1995 .

[36]  L. You,et al.  Trapped condensates of atoms with dipole interactions , 2001 .

[37]  J. Barry,et al.  Laser cooling of a diatomic molecule , 2010, Nature.

[38]  P B Blakie,et al.  Numerical method for evolving the dipolar projected Gross-Pitaevskii equation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Weizhu Bao,et al.  Dimension Reduction of the Schrödinger Equation with Coulomb and Anisotropic Confining Potentials , 2013, SIAM J. Appl. Math..

[40]  D. Landau,et al.  Bose-Einstein Condensation in Trapped Dipolar Gases , 2005 .

[41]  Sandro Stringari,et al.  Bose-Einstein condensation and superfluidity , 2016 .

[42]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[43]  Leslie Greengard,et al.  Fast and Accurate Evaluation of Nonlocal Coulomb and Dipole-Dipole Interactions via the Nonuniform FFT , 2013, SIAM J. Sci. Comput..

[44]  Christof Sparber,et al.  On the Gross–Pitaevskii equation for trapped dipolar quantum gases , 2008, 0805.0716.

[45]  M. Levitt Spin Dynamics: Basics of Nuclear Magnetic Resonance , 2001 .

[46]  K. B. Davis,et al.  Bose-Einstein Condensation in a Gas of Sodium Atoms , 1995, EQEC'96. 1996 European Quantum Electronic Conference.

[47]  Weizhu Bao,et al.  Mean-field regime of trapped dipolar Bose-Einstein condensates in one and two dimensions , 2010, 1006.4950.

[48]  Weizhu Bao,et al.  An Explicit Unconditionally Stable Numerical Method for Solving Damped Nonlinear Schrödinger Equations with a Focusing Nonlinearity , 2003, SIAM Journal on Numerical Analysis.

[49]  R. Grimm,et al.  Bose-Einstein condensation of erbium. , 2012, Physical review letters.

[50]  Yanzhi Zhang,et al.  A Simple and Efficient Numerical Method for Computing the Dynamics of Rotating Bose-Einstein Condensates via Rotating Lagrangian Coordinates , 2013, SIAM J. Sci. Comput..

[51]  K. Rzazewski,et al.  Bose-Einstein condensation with magnetic dipole-dipole forces , 2000 .

[52]  P. Markowich,et al.  Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.

[53]  Weizhu Bao,et al.  Computing the ground state and dynamics of the nonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT , 2014, J. Comput. Phys..

[54]  W. Bao,et al.  MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .

[55]  Santos,et al.  Bose-einstein condensation in trapped dipolar gases , 2000, Physical review letters.

[56]  Masahito Ueda,et al.  Spinor Bose-Einstein condensates , 2010, Quantum Atom Optics.