Chemical model for cement-based materials: Temperature dependence of thermodynamic functions for nanocrystalline and crystalline C–S–H phases

Abstract In the context of waste confinement and, more specifically, waste from the nuclear industry, concrete is used both as a confinement and as a building material. Its exposure to high temperatures makes its geochemical behavior difficult to predict over large periods of time. The present work aims to elucidate the solubility constants, as a function of temperature, for the phases of the system CaO–SiO2–H2O. For the nanocrystalline phases, the present work investigates the existence of compounds of fixed composition, possibly in a metastable state. The question of whether the nanocrystalline C–S–H phases correspond to a series of phases of discrete composition or a solid solution is discussed and compared to the possible influence of impurities in the solid phases. For the crystalline phases, having established that the currently available values of thermodynamic properties were not consistent, we show that their refinement leads to a better agreement with the literature data. From the refined thermodynamic properties of crystalline C–S–H, a polyhedral decomposition model is developed. It enables to estimate the enthalpy of formation and the heat capacity of nanocrystalline C–S–H phases. Finally, verification shows that such phases remain unstable compared to the crystalline phases, at room or higher temperatures. A comparison, based on reaction enthalpies derived from experimental data indicates that predicted values for nanocrystalline C–S–H are in close agreement with experimental data. By estimating the properties of okenite and truscottite with the model developed in this study, we have been able to complete the CaO–SiO2–H2O phase diagram with a reasonable agreement with the literature. The case of jaffeite remains open to discussion. Finally, for the hydrate C2SH,α, the model predicts a transition with hillebrandite at 159 °C, in contradiction with the hypothesis of C2SH,α metastability.

[1]  F. P. Glasser,et al.  Impact of prolonged warm (85°C) moist cure on Portland cement paste , 2000 .

[2]  X. Cong,et al.  29Si MAS NMR study of the structure of calcium silicate hydrate , 1996 .

[3]  K. Rogers,et al.  CO2 metasomatism in a basalt-hosted petroleum reservoir, Nuussuaq, West Greenland , 2006 .

[4]  G. Robinson,et al.  Heat capacity, relative enthalpy, and calorimetric entropy of silicate minerals; an empirical method of prediction , 1983 .

[5]  Carl I. Steefel,et al.  Multicomponent reactive transport in discrete fractures: II: Infiltration of hyperalkaline groundwater at Maqarin, Jordan, a natural analogue site , 1998 .

[6]  J. Donald Rimstidt,et al.  Estimating the thermodynamic properties (Δ Gof and Δ Hof ) of silicate minerals at 298 K from the sum of polyhedral contributions , 1989 .

[7]  Simulation expérimentale des C-S-H (CaO-SiO₂-H₂O) dans les bétons modernes : étude de la composition et des propriétés à l'équilibre dans des milieux complexes , 2000 .

[8]  H. Helgeson,et al.  Thermodynamic Properties of Aqueous Species and the Solubilities of Minerals at High Pressures and Temperatures; the System Al 2 O 3 -H 2 O-NaCl , 1995, American Journal of Science.

[9]  Chie Oda,et al.  Alteration of bentonite by hyperalkaline fluids : a review of the role of secondary minerals , 2007 .

[10]  Á. Iglesia,et al.  Estimation of thermodynamic properties of mineral carbonates at high and low temperatures from the sum of polyhedral contributions , 1994 .

[11]  T. N. Chang,et al.  Investigation of the Colloidal Hydrated Calcium Silicates. II. Solubility Relationships in the Calcium Oxide-Silica-Water System at 25° , 1965 .

[12]  Sung Y. Hong,et al.  Phase relations in the CaO-SiO2-H2O system to 200°C at saturated steam pressure. , 2004 .

[13]  L. S. Wells,et al.  Study of the system CaO-SiO2-H2O at 30 C and of the reaction of water on the anhydrous calcium silicates , 1934 .

[14]  480. Hydrated calcium silicates. Part IV. Hydrothermal reactions: lime : silica ratios 2 : 1 and 3 : 1 , 1952 .

[15]  G. C. Allen,et al.  X-ray photoelectron spectroscopy of the cement clinker phases tricalcium silicate and β-dicalcium silicate , 2003 .

[16]  D. Neumann,et al.  Ca-OH Bonding in the C-S-H Gel Phase of Tricalcium Silicate and White Portland Cement Pastes Measured by Inelastic Neutron Scattering , 2003 .

[17]  Jeffrey J. Thomas,et al.  Effect of hydration temperature on the solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pastes , 2003 .

[18]  R. Garrels,et al.  Prediction of Gibbs energies of formation of compounds from the elements—II. Monovalent and divalent metal silicates , 1977 .

[19]  F. Glasser,et al.  Cement hydrate phase: Solubility at 25C , 1992 .

[20]  Everett L. Shock,et al.  Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb , 1997 .

[21]  P. Glynn,et al.  Solid-solution aqueous-solution equilibria; thermodynamic theory and representation , 1990 .

[22]  J. Rancon Hydrothermal history of Piton des Neiges volcano (Reunion Island, Indian Ocean) , 1985 .

[23]  Mark Tyrer,et al.  Non-ideal solid solution aqueous solution modeling of synthetic calcium silicate hydrate , 2007 .

[24]  F. P. Glasser,et al.  Modelling the impact of abundant geochemical components on phase stability and solubility of the CaO-SiO2-H2O system at 25°C : Na+, K+, SO42-, Cl- and CO32- , 1997 .

[25]  A. Zotov,et al.  Thermodynamic description of equilibria in mixed fluids (H2O-non-polar gas) over a wide range of temperature (25–700°C) and pressure (1–5000 bars) , 1999 .

[26]  B. Lothenbach,et al.  Thermodynamic Modelling of the Effect of Temperature on the Hydration and Porosity of Portland Cement , 2008 .

[27]  R. Berman,et al.  Internally consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-F , 1988 .

[28]  H. Zanni,et al.  Calcium silicate hydrates investigated by solid‐state high resolution 1H and 29Si nuclear magnetic resonance , 2007 .

[29]  Eric C Gaucher,et al.  Cement/clay interactions-- a review: experiments, natural analogues, and modeling. , 2006, Waste management.

[30]  H. Taylor,et al.  Solubility and structure of calcium silicate hydrate , 2004 .

[31]  H. Taylor 726. Hydrated calcium silicates. Part I. Compound formation at ordinary temperatures , 1950 .

[32]  Carol J. Bruton,et al.  Cement minerals at elevated temperature: Thermodynamic and structural characteristics , 1993 .

[33]  M. W. Chase NIST-JANAF thermochemical tables , 1998 .

[34]  H. Taylor,et al.  Synthesis of normal and anomalous tobermorites , 1977 .

[35]  E. C. Beutner Slaty cleavage and related strain in Martinsburg Slate, Delaware Water Gap, New Jersey , 1978 .

[36]  F. P. Glasser,et al.  The chemistry of blended cements and backfills intended for use in radioactive waste disposal , 1999 .

[37]  D. L. Parkhurst,et al.  User's guide to PHREEQC (Version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 1999 .

[38]  Y. Tardy,et al.  Thermodynamics of ice polymorphs and 'ice-like' water in hydrates and hydroxides , 2001 .

[39]  Surendra K. Saxena,et al.  Thermodynamic data, models, and phase diagrams in multicomponent oxide systems : an assessment for materials and planetary scientists based on calorimetric, volumetric and phase equilibrium data , 2004 .

[40]  Xiulan Hu,et al.  Hydration of β-dicalcium silicate at high temperatures under hydrothermal conditions , 2006 .

[41]  G. Assarsson Hydrothermal Reactions between Calcium Hydroxide and Amorphous Silica: the Reactions between 180 and 220° , 1957 .

[42]  K. Speakman The Stability of Tobermorite in the System CaO-SiO2-H2O at Elevated Temperatures and Pressures , 1968 .

[43]  D. D. Wagman,et al.  The NBS tables of chemical thermodynamic properties : selected values for inorganic and C1 and C2 organic substances in SI units , 1982 .

[44]  J. Duplay,et al.  A short range interaction model applied to illite/smectite mixed-layer minerals , 1997 .

[45]  T. Mitsuda,et al.  Natural 1.1 and 1.4 nm tobermorites from Fuka, Okayama, Japan: Chemical analysis, cell dimensions, 29Si NMR and thermal behavior , 2003 .

[46]  S. Merlino,et al.  The real structures of clinotobermorite and tobermorite 9 Å: OD character, polytypes, and structural relationships;The real structures of clinotobermorite and tobermorite 9 Å: OD character, polytypes, and structural relationships , 2000 .

[47]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb , 1981 .

[48]  V. I. Babushkin,et al.  Thermodynamics of silicates , 1984 .

[49]  H. Taylor,et al.  The Dehydration of Xonotlite , 1956 .

[50]  D. Brew,et al.  Solubilities of CaO–SiO2–H2O phases at 25°, 55° and 85°C , 2004 .

[51]  D. Peacor,et al.  Jaffeite, a new hydrated calcium silicate from the Kombat Mine, Namibia , 1989 .

[52]  G. Allen,et al.  X-ray photoelectron study of oxygen bonding in crystalline C–S–H phases , 2004 .

[53]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C , 1988 .

[54]  Roger Powell,et al.  An internally consistent thermodynamic data set for phases of petrological interest , 1998 .

[55]  Xiulan Hu,et al.  Stability and phase relations of dicalcium silicate hydrates under hydrothermal conditions , 2006 .

[56]  H. Taylor,et al.  Hydrothermal reactions in lime‐quartz pastes , 1960 .

[57]  Ingvi Gunnarsson,et al.  Amorphous silica solubility and the thermodynamic properties of H4SiO°4 in the range of 0° to 350°C at Psat , 2000 .

[58]  R. I. Harker Dehydration Series in the System CaSiO3— SiO2— H2O , 1964 .

[59]  Donald E. Macphee,et al.  Compositional Model for Calcium Silicate Hydrate (C-S-H) Gels, Their Solubilities, and Free Energies of Formation , 1987 .

[60]  A. Benesi,et al.  Silicon‐29 Magic Angle Spinning Nuclear Magnetic Resonance Study of Calcium Silicate Hydrates , 1989 .

[61]  S. Merlino,et al.  The real structures of clinotobermorite and tobermorite 9 Å OD character, polytypes, and structural relationships , 2000 .

[62]  Crystal structure of hillebrandite: A natural analogue of calcium silicate hydrate (CSH) phases in Portland cement , 1995 .

[63]  F. P. Glasser,et al.  Cements in Radioactive Waste Disposal , 1994 .

[64]  E. Reardon,et al.  An ion interaction model for the determination of chemical equilibria in cement/water systems , 1990 .

[65]  Wakichi Kondo,et al.  Heterogeneous equilibrium of calcium silicate hydrate in water at 30 °C , 1981 .

[66]  David L. Parkhurst,et al.  Revised chemical equilibrium data for major water-mineral reactions and their limitations , 1990 .

[67]  T. Keith,et al.  Zeolites in Eocene Basaltic Pillow Lavas of the Siletz River Volcanics, Central Coast Range, Oregon , 1985 .

[68]  A. I. Al-Mana,et al.  29Si Magic‐Angle‐Spinning Nuclear Magnetic Resonance Study of Hydrated Cement Paste and Mortar , 1990 .

[69]  E. Shock,et al.  Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. , 1997, Geochimica et cosmochimica acta.

[70]  M. Schulte,et al.  The temperature dependence of the standard-state thermodynamic properties of aqueous nonelectrolytes , 2001 .

[71]  E. Newman Heats of formation of xonotlite, hillebrandite, and foshagite , 1956 .

[72]  S. Merlino Gyrolite: Its Crystal Structure and Crystal Chemistry , 1988, Mineralogical Magazine.

[73]  Barbara Lothenbach,et al.  Thermodynamic properties of Portland cement hydrates in the system CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O , 2007 .

[74]  I. Buick,et al.  The occurrence of cuspidine, foshagite and hillebrandite in calc-silicate xenoliths from the Bushveld Complex, South Africa. , 2000 .

[75]  F. Glasser,et al.  Investigation of the CaO-Al2O3-SiO2-H2O system at 25°C by thermodynamic calculations , 1995 .

[76]  D D Wagman,et al.  Erratum: The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units [J. Phys. Chem. Ref. Data 11, Suppl. 2 (1982)] , 1989 .

[77]  J. Donald Rimstidt,et al.  QUARTZ SOLUBILITY AT LOW TEMPERATURES , 1997 .

[78]  U. Berner,et al.  A thermodynamic description of the evolution of pore water chemistry and uranium speciation during the degradation of cement , 1990 .

[79]  R. Garrels,et al.  Prediction of Gibbs energies of formation—I. Relationships among Gibbs energies of formation of hydroxides, oxides and aqueous ions , 1976 .

[80]  W. Wagner,et al.  The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use , 2002 .

[81]  M. Kersten,et al.  Aqueous solubility diagrams for cementitious waste stabilization systems. 1. The C-S-H solid-solution system , 1996 .

[82]  A. Stefánsson,et al.  Dissolution of primary minerals of basalt in natural waters , 2001 .

[83]  G. Kalousek,et al.  Hydrothermal reactions of dicalcium silicate and silica , 1978 .

[84]  P. Landais,et al.  Advances in geochemical research for the underground disposal of high-level, long-lived radioactive waste in a clay formation , 2006 .

[85]  H. Megaw,et al.  Crystal Structure of Tobermorite , 1956, Nature.

[86]  R. N. Sukheswala,et al.  Zeolites and associated secondary minerals in the Deccan Traps of Western India , 1974, Mineralogical Magazine.

[87]  H. Taylor,et al.  Equilibria and non-equilibria in the formation of xonotlite and truscottite , 1984 .

[88]  T. J. Wolery,et al.  EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations: Theoretical manual, user`s guide, and related documentation (Version 7.0); Part 3 , 1992 .

[89]  E. Rydberg,et al.  Hydrothermal Reactions between Calcium Hydroxide and Amorphous Silica , 1956 .

[90]  V. A. Medvedev,et al.  CODATA key values for thermodynamics , 1989 .

[91]  P. Roller,et al.  The System Calcium Oxide-Silica-Water at 30°. The Association of Silicate* Ion in Dilute Alkaline Solution , 1940 .

[92]  T. Keith,et al.  Dachiardite from Yellowstone National Park, Wyoming , 1987 .

[93]  Hamlin M. Jennings,et al.  Aqueous Solubility Relationships for Two Types of Calcium Silicate Hydrate , 1986 .

[94]  F. J. Pearson,et al.  Nagra/PSI Chemical Thermodynamic Data Base 01/01 , 2002 .

[95]  I. Kusachi,et al.  Afwillite and jennite from Fuka, Okayama Prefecture, Japan , 1989 .

[96]  C. J. Lancucki,et al.  Products formed in an aged concrete the occurrence of okenite , 1983 .