Equivalence of Statistical Mechanical Ensembles for Non-Critical Quantum Systems

We consider the problem of whether the canonical and microcanonical ensembles are locally equivalent for short-ranged quantum Hamiltonians of N spins arranged on a d-dimensional lattices. For any temperature for which the system has a finite correlation length, we prove that the canonical and microcanonical state are approximately equal on regions containing up to O(N^(1/(d+1))) spins. The proof rests on a variant of the Berry-Esseen theorem for quantum lattice systems and ideas from quantum information theory.

[1]  J. Neumann,et al.  Beweis des Ergodensatzes und desH-Theorems in der neuen Mechanik , 1929 .

[2]  H. Georgii The equivalence of ensembles for classical systems of particles , 1995 .

[3]  Alessandro Silva,et al.  Colloquium: Nonequilibrium dynamics of closed interacting quantum systems , 2010, 1007.5331.

[4]  F. Brandão,et al.  A Generalization of Quantum Stein’s Lemma , 2009, 0904.0281.

[5]  Nathan Wiebe,et al.  Thermalization and Canonical Typicality in Translation-Invariant Quantum Lattice Systems , 2013, 1312.7420.

[6]  H. Araki Gibbs states of a one dimensional quantum lattice , 1969 .

[7]  H. Touchette The large deviation approach to statistical mechanics , 2008, 0804.0327.

[8]  Rahul Jain,et al.  Short Proofs of the Quantum Substate Theorem , 2011, IEEE Transactions on Information Theory.

[9]  Alexander Tikhomirov,et al.  On the Convergence Rate in the Central Limit Theorem for Weakly Dependent Random Variables , 1981 .

[10]  Louis H. Y. Chen,et al.  Normal approximation under local dependence , 2004, math/0410104.

[11]  A. J. Short,et al.  Entanglement and the foundations of statistical mechanics , 2005 .

[12]  J. Bricmont The statistical mechanics of lattice gases , 1996 .

[13]  Fernando G. S. L. Brandão,et al.  Exponential Decay of Correlations Implies Area Law , 2012, Communications in Mathematical Physics.

[14]  J. Eisert,et al.  Quantum many-body systems out of equilibrium , 2014, Nature Physics.

[15]  O. Hess,et al.  Gaussian Quantum Fluctuations in Interacting Many Particle Systems , 2003, math-ph/0312045.

[16]  A. C. Berry The accuracy of the Gaussian approximation to the sum of independent variates , 1941 .

[17]  Elliott H. Lieb,et al.  Existence of Thermodynamics for Real Matter with Coulomb Forces , 1969 .

[18]  R. Lima Equivalence of ensembles in quantum lattice systems , 1971 .

[19]  J. Eisert,et al.  Locality of temperature , 2013, 1309.0816.

[20]  Srednicki Chaos and quantum thermalization. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  J. Eisert,et al.  Thermalization in nature and on a quantum computer. , 2011, Physical review letters.

[22]  Roderich Tumulka,et al.  Canonical typicality. , 2006, Physical review letters.

[23]  D Goderis,et al.  Central limit theorem for mixing quantum systems and the CCR-algebra of fluctuations , 1989 .

[24]  Jaikumar Radhakrishnan,et al.  A new information-theoretic property about quantum states with an application to privacy in quantum communication ∗ , 2009 .

[25]  Nilanjana Datta,et al.  Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.

[26]  A. J. Short,et al.  Quantum mechanical evolution towards thermal equilibrium. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  J. Sunklodas Rate of convergence in the central limit theorem for random variables with strong mixing , 1984 .

[28]  R. Lima Equivalence of ensembles in quantum lattice systems: States , 1972 .

[29]  Gabriel Bouch Complex-time singularity and locality estimates for quantum lattice systems , 2010, 1011.1875.