Mitochondrial gene signature in the prefrontal cortex for differential susceptibility to chronic stress

[1]  R. Rodenburg,et al.  Impaired mitochondrial complex I function as a candidate driver in the biological stress response and a concomitant stress-induced brain metabolic reprogramming in male mice , 2020, Translational Psychiatry.

[2]  J. Ragoussis,et al.  Single-nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons , 2020, Nature Neuroscience.

[3]  K. Drexler,et al.  Major Depressive Disorder is Associated with Impaired Mitochondrial Function in Skin Fibroblasts , 2020, Cells.

[4]  A. Cressant,et al.  Neuroinflammation and depression: A review , 2020, The European journal of neuroscience.

[5]  Joseph R. Scarpa,et al.  Shared Transcriptional Signatures in Major Depressive Disorder and Mouse Chronic Stress Models , 2020, Biological Psychiatry.

[6]  R. Gruetter,et al.  Metabolic signature in nucleus accumbens for anti-depressant-like effects of acetyl-L-carnitine , 2020, eLife.

[7]  J. Nyengaard,et al.  Acute Inescapable Stress Rapidly Increases Synaptic Energy Metabolism in Prefrontal Cortex and Alters Working Memory Performance. , 2019, Cerebral cortex.

[8]  R. Dagda,et al.  Psychological Stress Phenocopies Brain Mitochondrial Dysfunction and Motor Deficits as Observed in a Parkinsonian Rat Model , 2019, Molecular Neurobiology.

[9]  P. Auvinen,et al.  Multi-omics analysis identifies mitochondrial pathways associated with anxiety-related behavior , 2019, PLoS genetics.

[10]  C. Sandi,et al.  Anxiety and Brain Mitochondria: A Bidirectional Crosstalk , 2019, Trends in Neurosciences.

[11]  M. Lebel,et al.  Neurobiology of resilience in depression: immune and vascular insights from human and animal studies , 2019, The European journal of neuroscience.

[12]  Vincent Gardeux,et al.  BRB-seq: ultra-affordable high-throughput transcriptomics enabled by bulk RNA barcoding and sequencing , 2019, Genome Biology.

[13]  J. Krystal,et al.  Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments , 2019, Neuron.

[14]  M. Treadway,et al.  The Impact of Stress and Major Depressive Disorder on Hippocampal and Medial Prefrontal Cortex Morphology , 2019, Biological Psychiatry.

[15]  Paul J. Harrison,et al.  The genomic basis of mood instability: identification of 46 loci in 363,705 UK Biobank participants, genetic correlation with psychiatric disorders, and association with gene expression and function , 2019, bioRxiv.

[16]  Bao-Ming Li,et al.  Chronic Stress Remodels Synapses in an Amygdala Circuit–Specific Manner , 2019, Biological Psychiatry.

[17]  E. Koster,et al.  Motivation and cognitive control in depression , 2018, Neuroscience & Biobehavioral Reviews.

[18]  Y. Trakadis,et al.  Biomarkers for major depressive and bipolar disorders using metabolomics: A systematic review , 2018, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[19]  E. D. de Kloet,et al.  Stress-Induced Plasticity and Functioning of Ventral Tegmental Dopamine Neurons , 2020, Neuroscience & Biobehavioral Reviews.

[20]  Zachary S. Lorsch,et al.  Multi-OMIC analysis of brain and serum from chronically-stressed mice reveals network disruptions in purine metabolism, fatty acid beta-oxidation, and antioxidant activity that are reversed by antidepressant treatment , 2018, bioRxiv.

[21]  R. Bagot,et al.  Wiring the depressed brain: optogenetic and chemogenetic circuit interrogation in animal models of depression , 2018, Neuropsychopharmacology.

[22]  J. Mann,et al.  Depression , 2018, The Lancet.

[23]  M. Müller,et al.  Chronic social stress-induced hyperglycemia in mice couples individual stress susceptibility to impaired spatial memory , 2018, Proceedings of the National Academy of Sciences.

[24]  C. Sandi,et al.  Medium chain triglyceride diet reduces anxiety-like behaviors and enhances social competitiveness in rats , 2018, Neuropharmacology.

[25]  D. Lewis,et al.  Opposite Molecular Signatures of Depression in Men and Women , 2018, Biological Psychiatry.

[26]  C. Sandi,et al.  Stress‐Induced Depression: Is Social Rank a Predictive Risk Factor? , 2018, BioEssays : news and reviews in molecular, cellular and developmental biology.

[27]  M. Weger,et al.  High anxiety trait: A vulnerable phenotype for stress-induced depression , 2018, Neuroscience & Biobehavioral Reviews.

[28]  M. Weger,et al.  Increased brain glucocorticoid actions following social defeat in rats facilitates the long-term establishment of social subordination , 2018, Physiology & Behavior.

[29]  Cole M. Haynes,et al.  UPRmt regulation and output: a stress response mediated by mitochondrial-nuclear communication , 2018, Cell Research.

[30]  E. Epel,et al.  An energetic view of stress: Focus on mitochondria , 2018, Frontiers in Neuroendocrinology.

[31]  G. Juhász,et al.  Genes Linking Mitochondrial Function, Cognitive Impairment and Depression are Associated with Endophenotypes Serving Precision Medicine , 2017, Neuroscience.

[32]  Tadafumi Kato,et al.  What Can Mitochondrial DNA Analysis Tell Us About Mood Disorders? , 2017, Biological Psychiatry.

[33]  Yogesh K. Dwivedi,et al.  Transcriptional profiling of mitochondria associated genes in prefrontal cortex of subjects with major depressive disorder , 2017, The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry.

[34]  M. Lobo,et al.  Molecular basis of dendritic atrophy and activity in stress susceptibility , 2017, Molecular Psychiatry.

[35]  Zachary S. Lorsch,et al.  Sex-specific transcriptional signatures in human depression , 2017, Nature Medicine.

[36]  Rolf Gruetter,et al.  Hierarchical Status Predicts Behavioral Vulnerability and Nucleus Accumbens Metabolic Profile Following Chronic Social Defeat Stress , 2017, Current Biology.

[37]  S. Russo,et al.  Reduced Slc6a15 in Nucleus Accumbens D2-Neurons Underlies Stress Susceptibility , 2017, The Journal of Neuroscience.

[38]  Robert W. Williams,et al.  Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals , 2017, The Journal of cell biology.

[39]  Bruce S. McEwen,et al.  Allostasis and the Epigenetics of Brain and Body Health Over the Life Course: The Brain on Stress , 2017, JAMA psychiatry.

[40]  C. Turck,et al.  Tau Deletion Prevents Stress‐Induced Dendritic Atrophy in Prefrontal Cortex: Role of Synaptic Mitochondria , 2016, Cerebral cortex.

[41]  J. Herman,et al.  Chronic Stress Increases Prefrontal Inhibition: A Mechanism for Stress-Induced Prefrontal Dysfunction , 2016, Biological Psychiatry.

[42]  Gregor Hasler,et al.  Social functioning in major depressive disorder , 2016, Neuroscience & Biobehavioral Reviews.

[43]  Cole M. Haynes,et al.  The Transcription Factor ATF5 Mediates a Mammalian Mitochondrial UPR , 2016, Current Biology.

[44]  C. Otte,et al.  Stress and Depression: a Crucial Role of the Mineralocorticoid Receptor , 2016, Journal of neuroendocrinology.

[45]  D. Pfaff,et al.  Stress and corticosteroids regulate rat hippocampal mitochondrial DNA gene expression via the glucocorticoid receptor , 2016, Proceedings of the National Academy of Sciences.

[46]  E. Nestler,et al.  Stress and Cocaine Trigger Divergent and Cell Type–Specific Regulation of Synaptic Transmission at Single Spines in Nucleus Accumbens , 2016, Biological Psychiatry.

[47]  Zachary S. Lorsch,et al.  Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility , 2016, Neuron.

[48]  J. Scholz,et al.  Neuroanatomic Differences Associated With Stress Susceptibility and Resilience , 2016, Biological Psychiatry.

[49]  J. Harper,et al.  Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation , 2016, Nature.

[50]  J. Salamone,et al.  Activational and effort-related aspects of motivation: neural mechanisms and implications for psychopathology. , 2016, Brain : a journal of neurology.

[51]  Karl R. Clauser,et al.  MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins , 2015, Nucleic Acids Res..

[52]  B. McEwen,et al.  Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex , 2016, Neuropsychopharmacology.

[53]  Zachary S. Lorsch,et al.  Sex Differences in Nucleus Accumbens Transcriptome Profiles Associated with Susceptibility versus Resilience to Subchronic Variable Stress , 2015, The Journal of Neuroscience.

[54]  C. Sandi,et al.  Mitochondrial function in the brain links anxiety with social subordination , 2015, Proceedings of the National Academy of Sciences.

[55]  B. McEwen,et al.  Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress , 2015, Proceedings of the National Academy of Sciences.

[56]  Martin Lévesque,et al.  Elevated Mitochondrial Bioenergetics and Axonal Arborization Size Are Key Contributors to the Vulnerability of Dopamine Neurons , 2015, Current Biology.

[57]  R. Duman,et al.  Spine synapse remodeling in the pathophysiology and treatment of depression , 2015, Neuroscience Letters.

[58]  S. Thompson,et al.  An excitatory synapse hypothesis of depression , 2015, Trends in Neurosciences.

[59]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[60]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[61]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[62]  C. Sandi,et al.  Social deficits induced by peripubertal stress in rats are reversed by resveratrol. , 2014, Journal of psychiatric research.

[63]  B. Mcewen,et al.  Mind the gap: glucocorticoids modulate hippocampal glutamate tone underlying individual differences in stress susceptibility , 2014, Molecular Psychiatry.

[64]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[65]  Bruce S. McEwen,et al.  Mitochondrial allostatic load puts the 'gluc' back in glucocorticoids , 2014, Nature Reviews Endocrinology.

[66]  M. Treadway,et al.  Imaging the pathophysiology of major depressive disorder - from localist models to circuit-based analysis , 2014, Biology of Mood & Anxiety Disorders.

[67]  M. Krstic-Demonacos,et al.  Brain region- and sex-specific modulation of mitochondrial glucocorticoid receptor phosphorylation in fluoxetine treated stressed rats: Effects on energy metabolism , 2013, Psychoneuroendocrinology.

[68]  P. Licznerski,et al.  Remodeling of axo-spinous synapses in the pathophysiology and treatment of depression , 2013, Neuroscience.

[69]  Andreas Meisel,et al.  Sugar for the brain: the role of glucose in physiological and pathological brain function , 2013, Trends in Neurosciences.

[70]  E. Nestler,et al.  The brain reward circuitry in mood disorders , 2013, Nature Reviews Neuroscience.

[71]  E. Morava,et al.  Mitochondria and the economy of stress (mal)adaptation , 2013, Neuroscience & Biobehavioral Reviews.

[72]  H. Torrell,et al.  Mitochondrial DNA (mtDNA) in brain samples from patients with major psychiatric disorders: Gene expression profiles, MtDNA content and presence of the MtDNA common deletion , 2013, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[73]  F. Nicoletti,et al.  L-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors , 2013, Proceedings of the National Academy of Sciences.

[74]  G. Godeheu,et al.  Chronic Stress Triggers Social Aversion via Glucocorticoid Receptor in Dopaminoceptive Neurons , 2013, Science.

[75]  Mikhail Pachkov,et al.  SwissRegulon, a database of genome-wide annotations of regulatory sites: recent updates , 2012, Nucleic Acids Res..

[76]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[77]  J. Nacher,et al.  Chronic stress alters inhibitory networks in the medial prefrontal cortex of adult mice , 2012, Brain Structure and Function.

[78]  B. McEwen,et al.  Glucocorticoids modulate the mTOR pathway in the hippocampus: differential effects depending on stress history. , 2012, Endocrinology.

[79]  David Attwell,et al.  Oxidative Phosphorylation, Not Glycolysis, Powers Presynaptic and Postsynaptic Mechanisms Underlying Brain Information Processing , 2012, The Journal of Neuroscience.

[80]  Rolf Gruetter,et al.  The neurochemical profile quantified by in vivo 1H NMR spectroscopy , 2012, NeuroImage.

[81]  Mikhail Pachkov,et al.  MotEvo: integrated Bayesian probabilistic methods for inferring regulatory sites and motifs on multiple alignments of DNA sequences , 2012, Bioinform..

[82]  A. Psarra,et al.  Glucocorticoids induce mitochondrial gene transcription in HepG2 cells: role of the mitochondrial glucocorticoid receptor. , 2011, Biochimica et biophysica acta.

[83]  S. Russo,et al.  A standardized protocol for repeated social defeat stress in mice , 2011, Nature Protocols.

[84]  E. Sibille,et al.  Integrated behavioral z-scoring increases the sensitivity and reliability of behavioral phenotyping in mice: Relevance to emotionality and sex , 2011, Journal of Neuroscience Methods.

[85]  Carmen Sandi,et al.  A role for glucocorticoids in the long-term establishment of a social hierarchy , 2010, Psychoneuroendocrinology.

[86]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[87]  J. Morrison,et al.  Stress-induced dendritic remodeling in the medial prefrontal cortex: Effects of circuit, hormones and rest , 2009, Brain Research.

[88]  A. Holmes,et al.  Stress-induced prefrontal reorganization and executive dysfunction in rodents , 2009, Neuroscience & Biobehavioral Reviews.

[89]  B. McEwen,et al.  Dynamic regulation of mitochondrial function by glucocorticoids , 2009, Proceedings of the National Academy of Sciences.

[90]  Chris Mungall,et al.  AmiGO: online access to ontology and annotation data , 2008, Bioinform..

[91]  Piotr J. Balwierz,et al.  Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data , 2009, Genome Biology.

[92]  J. Andersen,et al.  Redox imbalance in Parkinson's disease. , 2008, Biochimica et biophysica acta.

[93]  M. Furey,et al.  Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression , 2008, Brain Structure and Function.

[94]  Scott J. Russo,et al.  Molecular Adaptations Underlying Susceptibility and Resistance to Social Defeat in Brain Reward Regions , 2007, Cell.

[95]  D. Surmeier,et al.  Calcium, ageing, and neuronal vulnerability in Parkinson's disease , 2007, The Lancet Neurology.

[96]  B. McEwen Physiology and neurobiology of stress and adaptation: central role of the brain. , 2007, Physiological reviews.

[97]  C. Benkelfat,et al.  Patterns of gene expression in the limbic system of suicides with and without major depression , 2007, Molecular Psychiatry.

[98]  Bruce S. McEwen,et al.  Stress-Induced Alterations in Prefrontal Cortical Dendritic Morphology Predict Selective Impairments in Perceptual Attentional Set-Shifting , 2006, The Journal of Neuroscience.

[99]  C. Sandi,et al.  Stress suppresses and learning induces plasticity in CA3 of rat hippocampus: A three-dimensional ultrastructural study of thorny excrescences and their postsynaptic densities , 2005, Neuroscience.

[100]  F. Holsboer,et al.  Stress and the brain: from adaptation to disease , 2005, Nature Reviews Neuroscience.

[101]  Olga V. Demler,et al.  Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. , 2005, Archives of general psychiatry.

[102]  S. Chattarji,et al.  Recovery after chronic stress fails to reverse amygdaloid neuronal hypertrophy and enhanced anxiety-like behavior , 2004, Neuroscience.

[103]  B. McEwen,et al.  Protection and Damage from Acute and Chronic Stress: Allostasis and Allostatic Overload and Relevance to the Pathophysiology of Psychiatric Disorders , 2004, Annals of the New York Academy of Sciences.

[104]  C. Sandi Stress, cognitive impairment and cell adhesion molecules , 2004, Nature Reviews Neuroscience.

[105]  S. Houle,et al.  Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. , 2001, The American journal of psychiatry.

[106]  S. Provencher Automatic quantitation of localized in vivo 1H spectra with LCModel , 2001, NMR in biomedicine.

[107]  P. Davaris,et al.  Localization of the glucocorticoid receptor in rat brain mitochondria. , 2001, Archives of biochemistry and biophysics.

[108]  R Gruetter,et al.  Field mapping without reference scan using asymmetric echo‐planar techniques , 2000, Magnetic resonance in medicine.

[109]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[110]  J. Price,et al.  Reduced glucose metabolism in the subgenual prefrontal cortex in unipolar depression , 1998, Molecular Psychiatry.

[111]  B. McEwen,et al.  Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: Comparison of stressors , 1995, Neuroscience.

[112]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[113]  R. Porsolt,et al.  Behavioral despair in mice: a primary screening test for antidepressants. , 1977, Archives internationales de pharmacodynamie et de therapie.