Probabilistic PoF-based framework for fatigue life prediction of aircraft gas turbine discs

A probabilistic Physics of Failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty is developed. It incorporates the overall uncertainties appearing in structural integrity assessment. Thereby, a comprehensive uncertainty quantification (UQ) procedure is presented to quantify multiple types of uncertainty using multiplicative and additive UQ methods. Furthermore, the factors that contribute most to the resulting output uncertainty are investigated and identified for uncertainty reduction. High prediction accuracy of the proposed framework is validated through a comparison of model predictions to experimental results of GH4133 superalloy.

[1]  Thomas Svensson Prediction uncertainties at variable amplitude fatigue , 1997 .

[2]  Sankaran Mahadevan,et al.  Model uncertainty and Bayesian updating in reliability-based inspection , 2000 .

[3]  Todd Letcher,et al.  An Energy-Based Axial Isothermal-Mechanical Fatigue Lifing Method , 2012 .

[4]  Hong-Zhong Huang,et al.  Fatigue Life Estimation of an Aircaft Engine Under Different Load Spectrums , 2012 .

[5]  Mohammad Modarres,et al.  A Novel Bayesian Framework for Uncertainty Management in Physics-Based Reliability Models , 2007 .

[6]  Harry R. Millwater,et al.  The influence of uncertainty in usage and fatigue damage sensing on turbine engine prognosis , 2005 .

[7]  Hong-Zhong Huang,et al.  Probabilistic Low Cycle Fatigue Life Prediction Using an Energy-Based Damage Parameter and Accounting for Model Uncertainty , 2012 .

[8]  Maurice Lemaire,et al.  Reliability and mechanical design , 1997 .

[9]  A. Pineau,et al.  High temperature fatigue of nickel-base superalloys - A review with special emphasis on deformation modes and oxidation , 2009 .

[10]  Hong-Zhong Huang,et al.  Bayesian framework for probabilistic low cycle fatigue life prediction and uncertainty modeling of aircraft turbine disk alloys , 2013 .

[11]  Mohammad Modarres,et al.  A Bayesian Framework for Model Uncertainty Considerations in Fire Simulation Codes , 2009 .

[12]  Sankaran Mahadevan,et al.  Stochastic fatigue damage modeling under variable amplitude loading , 2007 .

[13]  David S. Riha,et al.  A Probabilistically-Based Damage Tolerance Analysis Computer Program for Hard Alpha Anomalies in Titanium Rotors , 2000 .

[14]  Hong-Zhong Huang,et al.  Probabilistic modeling of damage accumulation for time-dependent fatigue reliability analysis of railway axle steels , 2015 .

[15]  Patrick J. Golden,et al.  Reducing Uncertainty in Fatigue Life Limits of Turbine Engine Alloys (Preprint) , 2012 .

[16]  R. P. Skelton,et al.  The energy density exhaustion method for assessing the creep-fatigue lives of specimens and components , 2013 .

[17]  Yuji Nagae,et al.  Evaluation of creep–fatigue life based on fracture energy for modified 9Cr–1Mo steel , 2013 .

[18]  Bo Bergman,et al.  Variation mode and effect analysis: an application to fatigue life prediction , 2009, Qual. Reliab. Eng. Int..

[19]  Jing Li,et al.  Theoretical Estimation to the Cyclic Strength Coefficient and the Cyclic Strain-Hardening Exponent for Metallic Materials: Preliminary Study , 2009, Journal of Materials Engineering and Performance.

[20]  Sankaran Mahadevan,et al.  Uncertainty quantification and model validation of fatigue crack growth prediction , 2011 .

[21]  Keith Worden,et al.  Uncertainty analysis of a neural network used for fatigue lifetime prediction , 2008 .

[22]  Ramana V. Grandhi,et al.  A Bayesian approach for quantification of model uncertainty , 2010, Reliab. Eng. Syst. Saf..

[23]  Shan-Tung Tu,et al.  Review of creep–fatigue endurance and life prediction of 316 stainless steels , 2015 .

[24]  Harry R. Millwater,et al.  Application of Probabilistic Fracture Mechanics to Prognosis of Aircraft Engine Components , 2006 .

[25]  Igor Rychlik,et al.  Uncertainty in fatigue life prediction of structures subject to Gaussian loads , 2009 .

[26]  Shun-Peng Zhu,et al.  A generalized frequency separation–strain energy damage function model for low cycle fatigue–creep life prediction , 2010 .

[27]  Jon C. Helton,et al.  An exploration of alternative approaches to the representation of uncertainty in model predictions , 2003, Reliab. Eng. Syst. Saf..

[28]  RC McClung,et al.  A Software Framework for Probabilistic Fatigue Life Assessment of Gas Turbine Engine Rotors , 2004 .

[29]  Bruno Sudret,et al.  Probabilistic assessment of thermal fatigue in nuclear components , 2005 .

[30]  Hong-Zhong Huang,et al.  An efficient life prediction methodology for low cycle fatigue–creep based on ductility exhaustion theory , 2013 .

[31]  Hong-Zhong Huang,et al.  A generalized energy-based fatigue–creep damage parameter for life prediction of turbine disk alloys , 2012 .

[32]  Sankaran Mahadevan,et al.  Bayesian methodology for diagnosis uncertainty quantification and health monitoring , 2013 .

[33]  Harry R. Millwater,et al.  Probabilistic methods for design assessment of reliability with inspection , 2002 .