Positive Logic with adjoint Modalities: Proof Theory, Semantics, and Reasoning about Information
暂无分享,去创建一个
[1] Michael Moortgat. Multimodal Linguistic Inference , 1995, Log. J. IGPL.
[2] Heinrich Wansing,et al. Sequent Calculi for Normal Modal Proposisional Logics , 1994, J. Log. Comput..
[3] Simon Richards,et al. Aximo: Automated Axiomatic Reasoning for Information Update , 2009, Electron. Notes Theor. Comput. Sci..
[4] M. Sadrzadeh. Actions and resources in epistemic logic , 2006 .
[5] Rajeev Goré,et al. Substructural Logics on Display , 1998, Log. J. IGPL.
[6] Mehrnoosh Sadrzadeh,et al. Epistemic Actions as Resources , 2007, J. Log. Comput..
[7] Greg Restall,et al. An Introduction to Substructural Logics , 2000 .
[8] Sara Negri,et al. Proof Analysis in Modal Logic , 2005, J. Philos. Log..
[9] A. Prior. Papers On Time And Tense , 1968 .
[10] Yde Venema,et al. A Sahlqvist theorem for distributive modal logic , 2005, Ann. Pure Appl. Log..
[11] Alex K. Simpson,et al. The proof theory and semantics of intuitionistic modal logic , 1994 .
[12] Mehrnoosh Sadrzadeh,et al. Ockham’s razor and reasoning about information flow , 2008, Synthese.
[13] Roy Dyckhoff,et al. POSITIVE LOGIC WITH ADJOINT MODALITIES: PROOF THEORY, SEMANTICS, AND REASONING ABOUT INFORMATION , 2009, The Review of Symbolic Logic.
[14] M. de Rijke,et al. Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.
[15] Burghard von Karger. Temporal algebra , 1998 .
[16] A. Baltag,et al. Logics for epistemic programs , 2004 .
[17] Mehrnoosh Sadrzadeh. Implementation of a cut−free sequent calculus for logics with adjoint modalities , 2009 .
[18] J. Michael Dunn,et al. Positive modal logic , 1995, Stud Logica.
[19] Ramon Jansana,et al. Priestley Duality, a Sahlqvist Theorem and a Goldblatt-Thomason Theorem for Positive Modal Logic , 1999, Log. J. IGPL.
[20] Ryo Kashima,et al. Cut-free sequent calculi for some tense logics , 1994, Stud Logica.