Elastostatic contact imaging for a mechanoreceptive tactile device

This paper presents a sensory gripper, consisting of two tactile sensing matrices which acquire three dimensional images of objects of interest. The image processing algorithm uses elastostatic contact information to discriminate among a host of parts made of different materials. The algorithm also enables the assessment of orientation of parts without the pre-requisite of having to recognise them. The positions of stable holdsites and a safe gripping force are also evaluated.