Evolution of Structure in Cold Dark Matter Universes

We present an analysis of the clustering evolution of dark matter in four cold dark matter (CDM) cosmologies. We use a suite of high-resolution, 17 million particle, N-body simulations that sample volumes large enough to give clustering statistics with unprecedented accuracy. We investigate a flat model with Ω0 = 0.3, an open model also with Ω0 = 0.3, and two models with Ω = 1, one with the standard CDM power spectrum and the other with the same power spectrum as the Ω0 = 0.3 models. In all cases, the amplitude of primordial fluctuations is set so that the models reproduce the observed abundance of rich galaxy clusters by the present day. We compute mass two-point correlation functions and power spectra over 3 orders of magnitude in spatial scale and find that in all of our simulations they differ significantly from those of the observed galaxy distribution, in both shape and amplitude. Thus, for any of these models to provide an acceptable representation of reality, the distribution of galaxies must be biased relative to the mass in a nontrivial, scale-dependent fashion. In the Ω = 1 models, the required bias is always greater than unity, but in the Ω0 = 0.3 models, an "antibias" is required on scales smaller than ~5 h-1 Mpc. The mass correlation functions in the simulations are well fit by recently published analytic models. The velocity fields are remarkably similar in all the models, whether they are characterized as bulk flows, single-particle, or pairwise velocity dispersions. This similarity is a direct consequence of our adopted normalization and runs contrary to the common belief that the amplitude of the observed galaxy velocity fields can be used to constrain the value of Ω0. The small-scale pairwise velocity dispersion of the dark matter is somewhat larger than recent determinations from galaxy redshift surveys, but the bulk flows predicted by our models are broadly in agreement with most available data.

[1]  A. Vargas,et al.  The parachutes of the Mars Aerostat project , 1997 .

[2]  K. Gorski,et al.  Cosmic Microwave Background Anisotropy in COBE DMR-normalized Open and Flat-Λ Cold Dark Matter Cosmogonies , 1995, astro-ph/9512157.

[3]  F. Pearce,et al.  Hydra: a parallel adaptive grid code , 1997, astro-ph/9703183.

[4]  D. Weinberg,et al.  Large-scale structure in COBE-normalized cold dark matter cosmogonies , 1997, astro-ph/9702082.

[5]  Jr.,et al.  The Las Campanas Redshift Survey galaxy—galaxy autocorrelation function , 1996, astro-ph/9611206.

[6]  S. Faber,et al.  Homogeneous Velocity-Distance Data for Peculiar Velocity Analysis. III. The Mark III Catalog of Galaxy Peculiar Velocities , 1996, astro-ph/9610202.

[7]  R. Saglia,et al.  The Peculiar Motions of Early-type Galaxies in Two Distant Regions. IV. The Photometric Fitting Procedure , 1996, astro-ph/9609089.

[8]  Y. Jing,et al.  Analytical approximations to the low-order statistics of dark matter distributions , 1996, astro-ph/9607143.

[9]  R. Somerville,et al.  The Small-Scale Velocity Dispersion of Galaxies: A Comparison of Cosmological Simulations , 1996, astro-ph/9604051.

[10]  S. Cole Adding long-wavelength power to N-body simulations , 1996, astro-ph/9604046.

[11]  J. Holtzman,et al.  Small-Scale Power Spectrum and Correlations in Lambda + Cold Dark Matter Models , 1996 .

[12]  Sergio Ortolani,et al.  The White Dwarf Distance to the Globular Cluster NGC 6752 (and Its Age) with the HUBBLE SPACE TELESCOPE , 1996, astro-ph/9604179.

[13]  S. Burles,et al.  Cosmological baryon density derived from the deuterium abundance at redshift z = 3.57 , 1996, Nature.

[14]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[15]  J. Peacock,et al.  Non-linear evolution of cosmological power spectra , 1996, astro-ph/9603031.

[16]  G. Efstathiou,et al.  Power spectrum analysis of the Stromlo—APM redshift survey , 1996, astro-ph/9603016.

[17]  U. Jørgensen,et al.  Ages of globular clusters: a new approach , 1996, astro-ph/9602132.

[18]  S. Maddox,et al.  The APM Galaxy Survey — III. An analysis of systematic errors in the angular correlation function and cosmological implications , 1996, astro-ph/9601103.

[19]  S. Cole,et al.  Using the evolution of clusters to constrain Omega , 1996, astro-ph/9601088.

[20]  C. Baugh,et al.  Testing Ansätze for quasi-non-linear clustering: the linear APM power spectrum , 1996, astro-ph/9601085.

[21]  T. Padmanabhan Modelling the non-linear gravitational clustering in the expanding Universe , 1996 .

[22]  C. Baugh THE REAL-SPACE CORRELATION FUNCTION MEASURED FROM THE APM GALAXY SURVEY , 1995, astro-ph/9512011.

[23]  A. Liddle,et al.  The cluster abundance in flat and open cosmologies , 1995, astro-ph/9511007.

[24]  A. Evrard,et al.  Galaxy Dynamics in Clusters , 1995, astro-ph/9504020.

[25]  S. Shectman,et al.  The Las Campanas Redshift Survey , 1996, astro-ph/9604167.

[26]  R. Carlberg,et al.  The Average Mass and Light Profiles of Galaxy Clusters , 1995, astro-ph/9512087.

[27]  L. Costa,et al.  PAIRWISE VELOCITIES OF GALAXIES IN THE CFA AND SSRS2 REDSHIFT SURVEYS , 1995, astro-ph/9504070.

[28]  White,et al.  Structure formation with decaying neutrinos. , 1995, Physical review. D, Particles and fields.

[29]  T. Lauer,et al.  Brightest cluster galaxies as standard candles , 1995 .

[30]  K. Gorski,et al.  COBE DMR-normalized open inflation cold dark matter cosmogony , 1995, astro-ph/9502034.

[31]  M. Colless The Abell Cluster Inertial Frame , 1995, astro-ph/9502016.

[32]  L. Guzzo,et al.  in Wide Field Spectroscopy and the Distant Universe , 1995 .

[33]  A. Fabian,et al.  Einstein Observatory evidence for the widespread baryon overdensity in clusters of galaxies , 1995, astro-ph/9502092.

[34]  Y. Jing,et al.  Substructures and density profiles of clusters in models of galaxy formation , 1994, astro-ph/9412072.

[35]  F. Pearce,et al.  Hydra: An Adaptive--Mesh Implementation of PPPM--SPH , 1994, astro-ph/9409058.

[36]  Changbom Park,et al.  Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey , 1994 .

[37]  John K. Salmon,et al.  Large-scale structure after COBE: Peculiar velocities and correlations of cold dark matter halos , 1994 .

[38]  J. M. Gelb,et al.  Cold dark matter. 1: The Formation of dark halos , 1994, astro-ph/9408028.

[39]  J. M. Gelb,et al.  Cold dark matter. 2: Spatial and velocity statistics , 1994, astro-ph/9408029.

[40]  T. Lauer,et al.  The Motion of the Local Group with Respect to the 15,000 Kilometer per Second Abell Cluster Inertial Frame , 1994 .

[41]  G. Efstathiou,et al.  The clustering of IRAS galaxies , 1994, astro-ph/9403042.

[42]  A. Evrard,et al.  Two-Fluid Simulations of Galaxy Formation , 1994 .

[43]  J. A. PeacockS.J. Dodds,et al.  Reconstructing the linear power spectrum of cosmological mass fluctuations , 1993, astro-ph/9311057.

[44]  R. Croft,et al.  The correlation function of rich clusters of galaxies in CDM-like models , 1993, astro-ph/9310017.

[45]  J. Huchra,et al.  Clustering in the 1.2-Jy IRAS Galaxy Redshift Survey – II. Redshift distortions and $\xi (r_p, \pi)$ , 1993, astro-ph/9308013.

[46]  F. Bernardeau Skewness and Kurtosis in Large-Scale Cosmic Fields , 1993, astro-ph/9312026.

[47]  A. Evrard,et al.  The baryon content of galaxy clusters: a challenge to cosmological orthodoxy , 1993, Nature.

[48]  Carlton M. Baugh,et al.  The three-dimensional power spectrum measured from the APM Galaxy Survey – I. Use of the angular correlation function , 1993 .

[49]  Y. Jing,et al.  On the pairwise velocity dispersion of galaxies , 1993 .

[50]  S. Faber,et al.  Streaming motions in the local universe : evidence for large-scale, low-amplitude density fluctuations , 1993 .

[51]  A. Melott,et al.  Controlled experiments in cosmological gravitational clustering , 1993 .

[52]  P. Coles Galaxy formation with a local bias , 1993 .

[53]  S. White,et al.  The Correlation function of clusters of galaxies and the amplitude of mass fluctuations in the Universe , 1993, astro-ph/9602052.

[54]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation – II. Comparison with N-body simulations , 1994, astro-ph/9402069.

[55]  D. Weinberg,et al.  Non-Gaussian fluctuations and the statistics of galaxy clustering , 1992 .

[56]  Neal Katz,et al.  Galaxies and Gas in a Cold Dark Matter Universe , 1992 .

[57]  R. Cen,et al.  Galaxy formation and physical bias , 1992 .

[58]  G. Hinshaw,et al.  Structure in the COBE differential microwave radiometer first-year maps , 1992 .

[59]  E. Turner,et al.  A lower limit of the cosmic mean density from the ages of clusters of galaxies , 1992 .

[60]  Changbom Park,et al.  Large-Scale Clustering of Galaxies in the CfA Redshift Survey , 1992 .

[61]  J. Huchra,et al.  The velocity field of clusters of galaxies within 100 megaparsecs. II: Northern clusters , 1991 .

[62]  Changbom Park,et al.  Primordial fluctuations and non-linear structure , 1991 .

[63]  S. White,et al.  Quasar-modulated galaxy clustering in a cold dark matter universe , 1991 .

[64]  J. Bond,et al.  The formation of cosmic structure with a 17 keV neutrino , 1991 .

[65]  Changbom Park The biasing scheme in N-body simulations , 1991 .

[66]  A. Hamilton,et al.  Reconstructing the primordial spectrum of fluctuations of the universe from the observed nonlinear clustering of galaxies , 1991 .

[67]  Keith A. Arnaud,et al.  A measurement of the mass fluctuation spectrum from the cluster X-ray temperature function , 1991 .

[68]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[69]  C. Frenk Models of large scale structure , 1991 .

[70]  G. Efstathiou,et al.  Large scale clustering of IRAS galaxies , 1990 .

[71]  Keith A. Arnaud,et al.  An X-ray flux-limited sample of clusters of galaxies : evidence for evolution of the luminosity function. , 1990 .

[72]  R. Ellis,et al.  The 60-μ and far-infrared luminosity functions of IRAS galaxies , 1990 .

[73]  Samuel Harvey Moseley,et al.  A Preliminary measurement of the Cosmic Microwave Background spectrum by the Cosmic Background Explorer (COBE) satellite , 1990 .

[74]  R. Carlberg Cosmological Velocity Bias , 1993, astro-ph/9309021.

[75]  G. Efstathiou,et al.  Galaxy clusters and the amplitude of primordial fluctuations , 1990 .

[76]  George Efstathiou,et al.  Galaxy correlations on large scales , 1990 .

[77]  R. G. Carlberg,et al.  Mergers and bias in a cold dark matter cosmology , 1989 .

[78]  G. Efstathiou,et al.  The formation of dark halos in a universe dominated by cold dark matter , 1988 .

[79]  David Burstein,et al.  Spectroscopy and photometry of elliptical galaxies. V - Galaxy streaming toward the new supergalactic center , 1988 .

[80]  S. White,et al.  Galaxy distribution in a cold dark matter universe , 1987, Nature.

[81]  M. Rees,et al.  Physical mechanisms for biased galaxy formation , 1987, Nature.

[82]  Carlos S. Frenk,et al.  Clusters, filaments, and voids in a universe dominated by cold dark matter , 1987 .

[83]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[84]  G. Efstathiou,et al.  Cold dark matter, the structure of galactic haloes and the origin of the Hubble sequence , 1985, Nature.

[85]  A. Melott,et al.  Statistical comparison of galaxy formation models - The bispectrum , 1985 .

[86]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[87]  G. Efstathiou,et al.  Numerical techniques for large cosmological N-body simulations , 1985 .

[88]  J. R. Bond,et al.  Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter , 1984 .

[89]  N. Kaiser On the spatial correlations of Abell clusters , 1984 .

[90]  S. White,et al.  The size of clusters in a neutrino-dominated universe , 1984 .

[91]  Simon D. M. White,et al.  Clustering in a neutrino-dominated universe , 1983 .

[92]  A. Klypin,et al.  Three-dimensional numerical model of the formation of large-scale structure in the Universe , 1983 .

[93]  J. Centrella,et al.  Three-dimensional simulation of large-scale structure in the Universe , 1983, Nature.

[94]  S. White,et al.  Nonlinear evolution of large-scale structure in the universe , 1983 .

[95]  Marc Davis,et al.  A survey of galaxy redshifts. V. The two-point position and velocity correlations. , 1983 .

[96]  P. Peebles Large-scale background temperature and mass fluctuations due to scale-invariant primeval perturbations , 1982 .

[97]  Alan H. Guth,et al.  Fluctuations in the New Inflationary Universe , 1982 .

[98]  J. W. Eastwood,et al.  On the clustering of particles in an expanding Universe , 1981 .

[99]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[100]  S. J. Aarseth,et al.  N-body simulations of galaxy clustering. III. The covariance function , 1979 .

[101]  J. Gunn Massive galactic halos. I. Formation and evolution. , 1977 .

[102]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[103]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.