Integrated membrane material and process development for gas separation

The widespread application of membrane gas separation systems in recent years results from the development of effective process designs and high performance membrane materials. This has led to low-cost and energy-efficient processes. This review highlights three new developments in membrane technology that further enhance the technology's competitiveness. First, the development of sweep/countercurrent designs that integrate membrane units into process trains with high energy efficiency, especially for separations with low feed-to-permeate pressure ratios, are discussed. Second, the development of process designs that balance permeability and selectivity to achieve maximum efficiency are considered. Finally, recent studies of thin-film membrane stability are reviewed. The decrease in membrane permeability overtime is a problem that continues to limit membrane processes. However, because the causes of the decline are now better understood, cures may be possible.

[1]  B. Freeman,et al.  Energy-efficient polymeric gas separation membranes for a sustainable future: A review , 2013 .

[2]  D. R. Paul,et al.  Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical agingPart I. Experimental observations , 2000 .

[3]  B. Freeman,et al.  Physical aging of polystyrene films tracked by gas permeability , 2013 .

[4]  W. Koros,et al.  Physical aging of thin 6FDA-based polyimide membranes containing carboxyl acid groups. Part I. Transport properties , 2006 .

[5]  Haiqing Lin,et al.  Dehydration of natural gas using membranes. Part II: Sweep/countercurrent design and field test , 2013 .

[6]  Benny D. Freeman,et al.  Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes , 1999 .

[7]  Young Moo Lee,et al.  Polymers with Cavities Tuned for Fast Selective Transport of Small Molecules and Ions , 2007, Science.

[8]  L. Robeson,et al.  The upper bound revisited , 2008 .

[9]  Stephen J. Miller,et al.  Mixed matrix membranes using carbon molecular sieves: II. Modeling permeation behavior , 2003 .

[10]  B. Freeman,et al.  A variable energy positron annihilation lifetime spectroscopy study of physical aging in thin glassy polymer films , 2009 .

[11]  Norman R. Horn,et al.  Aging and carbon dioxide plasticization of thin polyetherimide films , 2012 .

[12]  Donald R Paul,et al.  Physical aging of thin glassy polymer films: Free volume interpretation , 2006 .

[13]  Donald R Paul,et al.  Effect of film thickness on the gas-permeation characteristics of glassy polymer membranes , 2007 .

[14]  William J. Koros,et al.  Polymeric membrane materials for solution-diffusion based permeation separations , 1988 .

[15]  Yongjiang Huang,et al.  Physical aging of thin glassy polymer films monitored by gas permeability , 2004 .

[16]  S. Kelley,et al.  The effect of degree of acetylation on gas sorption and transport behavior in cellulose acetate , 1989 .

[17]  John J. Marano,et al.  Integration of Gas Separation Membranes with IGCC Identifying the right membrane for the right job , 2009 .

[18]  Ryan P. Lively,et al.  Water and beyond: Expanding the spectrum of large‐scale energy efficient separation processes , 2012 .

[19]  J. W. Barlow,et al.  Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical agingPart II. Mathematical model , 2000 .

[20]  T. Merkel,et al.  Carbon dioxide capture with membranes at an IGCC power plant , 2012 .

[21]  R. Baker Future directions of membrane gas separation technology , 2002 .

[22]  B. Freeman,et al.  Plasticization-Enhanced Hydrogen Purification Using Polymeric Membranes , 2006, Science.

[23]  J. G. Wijmans,et al.  Membrane-based oxygen-enriched combustion , 2013 .

[24]  J. Franz,et al.  An evaluation of CO2 and H2 selective polymeric membranes for CO2 separation in IGCC processes , 2010 .

[25]  W. Ho,et al.  CO2 capture and H2 purification: Prospects for CO2‐selective membrane processes , 2013 .

[26]  J. G. Wijmans,et al.  The solution-diffusion model: a review , 1995 .

[27]  B. Freeman,et al.  Physical aging of ultrathin glassy polymer films tracked by gas permeability , 2009 .

[28]  S. A. Stern,et al.  Polymers for gas separations: the next decade , 1994 .

[29]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .

[30]  Wei Wei,et al.  Membrane performance requirements for carbon dioxide capture using hydrogen-selective membranes in i , 2011 .

[31]  R. Baker Membrane Technology and Applications , 1999 .

[32]  Haiqing Lin,et al.  Power plant post-combustion carbon dioxide capture: An opportunity for membranes , 2010 .

[33]  Young Moo Lee,et al.  High performance polymer membranes for CO2 separation , 2013 .

[34]  S. Goh,et al.  A governing equation for physical aging of thick and thin fluoropolyimide films , 2004 .

[35]  Donald R Paul,et al.  Physical aging of 6FDA-based polyimide membranes monitored by gas permeability , 2011 .