Two new splitting algorithms for equilibrium problems

In this paper, sequential and parallel splitting algorithms are proposed for solving equilibrium problems given by a sum of two functions. The convergence of the sequences generated by the proposed methods is guaranteed by assuming the Hölder continuity of each function. Some preliminary numerical experiences and comparisons are also reported.

[1]  Le Dung Muu,et al.  Dual extragradient algorithms extended to equilibrium problems , 2011, Journal of Global Optimization.

[2]  J. Kim,et al.  A PROXIMAL POINT-TYPE ALGORITHM FOR PSEUDOMONOTONE EQUILIBRIUM PROBLEMS , 2012 .

[3]  Yeol Je Cho,et al.  Systems of generalized nonlinear variational inequalities and its projection methods , 2008 .

[4]  Y. Cho,et al.  Convergence theorems based on hybrid methods for generalized equilibrium problems and fixed point problems , 2009 .

[5]  A. Moudafi Proximal point algorithm extended to equilibrium problems , 1999 .

[6]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[7]  Igor V. Konnov,et al.  Splitting-type method for systems of variational inequalities , 2006, Comput. Oper. Res..

[8]  Luis M. Briceno-Arias Outer Approximation Method for Constrained Composite Fixed Point Problems Involving Lipschitz Pseudo Contractive Operators , 2011 .

[9]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[10]  Ronald E. Bruck On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space , 1977 .

[11]  Anatoly Antipin The convergence of proximal methods to fixed points of extremal mappings and estimates of their rate of convergence , 1995 .

[12]  G. Mastroeni On Auxiliary Principle for Equilibrium Problems , 2003 .

[13]  Guo-ji Tang,et al.  AN INEXACT PROXIMAL POINT ALGORITHM FOR NONMONOTONE EQUILIBRIUM PROBLEMS IN BANACH SPACES , 2013 .

[14]  W. Takahashi,et al.  Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space , 2008 .

[15]  Le Dung Muu,et al.  An extragradient algorithm for solving bilevel pseudomonotone variational inequalities , 2012, J. Glob. Optim..

[16]  Hong-Kun Xu,et al.  Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process , 1993 .

[17]  T. D. Quoc,et al.  Extragradient algorithms extended to equilibrium problems , 2008 .

[18]  Siegfried Schaible,et al.  Handbook of Generalized Convexity and Generalized Monotonicity , 2005 .

[19]  A. Iusem,et al.  New existence results for equilibrium problems , 2003 .

[20]  F. Giannessi Vector Variational Inequalities and Vector Equilibria , 2000 .

[21]  L. Briceño-Arias A Douglas–Rachford splitting method for solving equilibrium problems , 2011, 1110.1670.

[22]  P. Ánh A hybrid extragradient method extended to fixed point problems and equilibrium problems , 2013 .

[23]  Isao Yamada,et al.  An Ergodic Algorithm for the Power-Control Games for CDMA Data Networks , 2009, J. Math. Model. Algorithms.

[24]  J. Borwein,et al.  Techniques of variational analysis , 2005 .

[25]  R. Díaz Millán,et al.  A Direct Splitting Method for Nonsmooth Variational Inequalities , 2014, J. Optim. Theory Appl..

[26]  Benar Fux Svaiter,et al.  On Weak Convergence of the Douglas-Rachford Method , 2010, SIAM J. Control. Optim..

[27]  Massimo Pappalardo,et al.  A new solution method for equilibrium problems , 2009, Optim. Methods Softw..

[28]  Massimo Pappalardo,et al.  Existence and solution methods for equilibria , 2013, Eur. J. Oper. Res..

[29]  J. Moreau Fonctions convexes duales et points proximaux dans un espace hilbertien , 1962 .

[30]  Somyot Plubtieng,et al.  A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces , 2007 .

[31]  I. Konnov Combined Relaxation Methods for Variational Inequalities , 2000 .

[32]  J. Nash NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.

[33]  Ronald E. Bruck A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces , 1979 .

[34]  Giandomenico Mastroeni,et al.  Gap Functions for Equilibrium Problems , 2003, J. Glob. Optim..

[35]  G. M. Korpelevich The extragradient method for finding saddle points and other problems , 1976 .

[36]  Monica Bianchi,et al.  Generalized monotone bifunctions and equilibrium problems , 1996 .

[37]  P. L. Combettes,et al.  Equilibrium programming in Hilbert spaces , 2005 .

[38]  Gregory B. Passty Ergodic convergence to a zero of the sum of monotone operators in Hilbert space , 1979 .

[39]  Siegfried Schaible,et al.  Duality for Equilibrium Problems under Generalized Monotonicity , 2000 .

[40]  J. Nash Equilibrium Points in N-Person Games. , 1950, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M. Solodov,et al.  A New Projection Method for Variational Inequality Problems , 1999 .

[42]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[43]  A. Moudafi On the convergence of splitting proximal methods for equilibrium problems in Hilbert spaces , 2009 .

[44]  Pham Ky Anh,et al.  Parallel Hybrid Iterative Methods for Variational Inequalities, Equilibrium Problems, and Common Fixed Point Problems , 2015 .