A numerical investigation of sign-changing solutions to superlinear elliptic equations on symmetric domains

In this paper, we investigate numerically sign-changing solutions of superlinear elliptic equations on symmetric domains. Based upon the symmetric criticality principle of Palais, the existence of sign-changing solutions which re2ect the symmetry

[1]  Helmut Hofer,et al.  A NOTE ON THE TOPOLOGICAL DEGREE AT A CRITICAL POINT OF MOUNTAINPASS-TYPE , 1984 .

[2]  A. Castro,et al.  A sign-changing solution for a superlinear Dirichlet problem with a reaction term nonzero at zero , 1997 .

[3]  Nassif Ghoussoub,et al.  Duality and Perturbation Methods in Critical Point Theory , 1993 .

[4]  Zhi-Qiang Wang On a superlinear elliptic equation , 1991 .

[5]  M. Willem,et al.  Multiple critical points of invariant functionals and applications , 1986 .

[6]  J. Mawhin,et al.  Critical Point Theory and Hamiltonian Systems , 1989 .

[7]  H. Berestycki,et al.  A perturbation method in critical point theory and applications , 1981 .

[8]  J. M. Neuberger A numerical method for finding sign-changing solutions of superlinear Dirichlet problems , 1996 .

[9]  Y. Choi,et al.  A mountain pass method for the numerical solution of semilinear elliptic problems , 1993 .

[10]  Y. Chen,et al.  Traveling Waves in a Nonlinearly Suspended Beam: Theoretical Results and Numerical Observations , 1997 .

[11]  T. Bartsch,et al.  On the existence of sign changing solutions for semilinear Dirichlet problems , 1996 .

[12]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[13]  Jianxin Zhou,et al.  Algorithms and Visualization for solutions of nonlinear Elliptic equations , 2000, Int. J. Bifurc. Chaos.

[14]  Y. Choi,et al.  A mountain pass method for the numerical solution of semilinear wave equations , 1993 .

[15]  H. Schönheinz G. Strang / G. J. Fix, An Analysis of the Finite Element Method. (Series in Automatic Computation. XIV + 306 S. m. Fig. Englewood Clifs, N. J. 1973. Prentice‐Hall, Inc. , 1975 .

[16]  Richard S. Palais,et al.  The principle of symmetric criticality , 1979 .

[17]  P. Rabinowitz Minimax methods in critical point theory with applications to differential equations , 1986 .

[18]  L. Humphreys,et al.  Numerical mountain pass solutions of a suspension bridge equation , 1997 .

[19]  Goong Chen,et al.  A high-linking algorithm for sign-changing solutions of semilinear elliptic equations , 1999 .