Fault Localization of Timed Automata Using Maximum Satisfiability

Timed automata are formal models for systems whose real-time behavior is a major concern, and practical model checking tools are available for them. Although these tools are effective to detect faulty behavior, localizing root causes of faulty timed automata requires a costly manual task of studying counter-examples. This paper presents an automatic fault localization problem. The proposed approach follows the Reiter’s model-based diagnosis theory to employ the consistency-based method, and details the method to show how the Reiter’s general theory is applicable to timed automata. In particular, the proposed method introduces a modest assumption on the failure. The paper discusses how the failure model and properties to be checked affect the formula used in the consistency-based fault localization method.

[1]  Karem A. Sakallah,et al.  Algorithms for Computing Minimal Unsatisfiable Subsets of Constraints , 2007, Journal of Automated Reasoning.

[2]  Armin Biere,et al.  Symbolic Model Checking without BDDs , 1999, TACAS.

[3]  Sean Safarpour,et al.  Improved Design Debugging Using Maximum Satisfiability , 2007 .

[4]  Sharad Malik,et al.  Post-silicon fault localisation using maximum satisfiability and backbones , 2011, 2011 Formal Methods in Computer-Aided Design (FMCAD).

[5]  Maria Sorea Bounded Model Checking for Timed Automata , 2002, Electron. Notes Theor. Comput. Sci..

[6]  Rajeev Alur,et al.  Formal verification of hybrid systems , 2011, 2011 Proceedings of the Ninth ACM International Conference on Embedded Software (EMSOFT).

[7]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[8]  Shin Nakajima,et al.  Hardened Flow-Sensitive Trace Formula for Fault Localization , 2015, 2015 20th International Conference on Engineering of Complex Computer Systems (ICECCS).

[9]  Shin Nakajima Using Real-Time Maude to Model Check Energy Consumption Behavior , 2015, FM.

[10]  Zohar Manna,et al.  The Temporal Logic of Reactive and Concurrent Systems , 1991, Springer New York.

[11]  Shin Nakajima,et al.  Fault Localization of Energy Consumption Behavior Using Maximum Satisfiability , 2015, CyPhy.

[12]  Karem A. Sakallah,et al.  On Finding All Minimally Unsatisfiable Subformulas , 2005, SAT.

[13]  Wang Yi,et al.  Uppaal in a nutshell , 1997, International Journal on Software Tools for Technology Transfer.

[14]  Mark H. Liffiton,et al.  Enumerating Infeasibility: Finding Multiple MUSes Quickly , 2013, CPAIOR.

[15]  Rupak Majumdar,et al.  Cause clue clauses: error localization using maximum satisfiability , 2010, PLDI '11.

[16]  Shin Nakajima,et al.  A Formula-Based Approach for Automatic Fault Localization of Imperative Programs , 2014, ICFEM.

[17]  L. D. Moura,et al.  The YICES SMT Solver , 2006 .

[18]  Thomas Wies,et al.  Flow-Sensitive Fault Localization , 2013, VMCAI.

[19]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[20]  Joao Marques-Silva,et al.  MaxSAT-Based MCS Enumeration , 2012, Haifa Verification Conference.