Scripps Genome ADVISER: Annotation and Distributed Variant Interpretation SERver

Interpretation of human genomes is a major challenge. We present the Scripps Genome ADVISER (SG-ADVISER) suite, which aims to fill the gap between data generation and genome interpretation by performing holistic, in-depth, annotations and functional predictions on all variant types and effects. The SG-ADVISER suite includes a de-identification tool, a variant annotation web-server, and a user interface for inheritance and annotation-based filtration. SG-ADVISER allows users with no bioinformatics expertise to manipulate large volumes of variant data with ease – without the need to download large reference databases, install software, or use a command line interface. SG-ADVISER is freely available at genomics.scripps.edu/ADVISER.

[1]  W. Grody,et al.  ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007 , 2008, Genetics in Medicine.

[2]  Daniel Rios,et al.  Bioinformatics Applications Note Databases and Ontologies Deriving the Consequences of Genomic Variants with the Ensembl Api and Snp Effect Predictor , 2022 .

[3]  Jacob A. Tennessen,et al.  Evolution and Functional Impact of Rare Coding Variation from Deep Sequencing of Human Exomes , 2012, Science.

[4]  F. Collins,et al.  Potential etiologic and functional implications of genome-wide association loci for human diseases and traits , 2009, Proceedings of the National Academy of Sciences.

[5]  Hagit Shatkay,et al.  F-SNP: computationally predicted functional SNPs for disease association studies , 2007, Nucleic Acids Res..

[6]  J. Shendure,et al.  A general framework for estimating the relative pathogenicity of human genetic variants , 2014, Nature Genetics.

[7]  Heng Li,et al.  Snap: an integrated SNP annotation platform , 2006, Nucleic Acids Res..

[8]  Murat Sincan,et al.  VAR‐MD: A tool to analyze whole exome–genome variants in small human pedigrees with mendelian inheritance , 2012, Human mutation.

[9]  Eran Halperin,et al.  Identifying Personal Genomes by Surname Inference , 2013, Science.

[10]  E. Boerwinkle,et al.  dbNSFP v2.0: A Database of Human Non‐synonymous SNVs and Their Functional Predictions and Annotations , 2013, Human mutation.

[11]  Vladimir Makarov,et al.  AnnTools: a comprehensive and versatile annotation toolkit for genomic variants , 2012, Bioinform..

[12]  K. Flaherty,et al.  Inhibition of mutated, activated BRAF in metastatic melanoma. , 2010, The New England journal of medicine.

[13]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[14]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[15]  Yves Moreau,et al.  Annotate-it: a Swiss-knife approach to annotation, analysis and interpretation of single nucleotide variation in human disease , 2012, Genome Medicine.

[16]  Aaron R. Quinlan,et al.  GEMINI: Integrative Exploration of Genetic Variation and Genome Annotations , 2013, PLoS Comput. Biol..

[17]  Joseph K. Pickrell,et al.  A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes , 2012, Science.

[18]  David J. Cutler,et al.  SeqAnt: A web service to rapidly identify and annotate DNA sequence variations , 2010, BMC Bioinformatics.

[19]  Ying Li,et al.  TREAT: a bioinformatics tool for variant annotations and visualizations in targeted and exome sequencing data , 2011, Bioinform..

[20]  P. Visscher,et al.  Estimating missing heritability for disease from genome-wide association studies. , 2011, American journal of human genetics.

[21]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[22]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[23]  N. Campbell Genetic association database , 2004, Nature Reviews Genetics.

[24]  Evan T. Geller,et al.  Patterns and rates of exonic de novo mutations in autism spectrum disorders , 2012, Nature.

[25]  P. Ng,et al.  Predicting the effects of frameshifting indels , 2012, Genome Biology.

[26]  S. Henikoff,et al.  Predicting deleterious amino acid substitutions. , 2001, Genome research.

[27]  P. Stenson,et al.  Human Gene Mutation Database: towards a comprehensive central mutation database , 2007, Journal of Medical Genetics.

[28]  Alan F. Scott,et al.  Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders , 2002, Nucleic Acids Res..

[29]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[30]  P. Shannon,et al.  Analysis of Genetic Inheritance in a Family Quartet by Whole-Genome Sequencing , 2010, Science.

[31]  Elizabeth M. Smigielski,et al.  dbSNP: the NCBI database of genetic variation , 2001, Nucleic Acids Res..

[32]  Dongsheng Tu,et al.  K-ras mutations and benefit from cetuximab in advanced colorectal cancer. , 2008, The New England journal of medicine.

[33]  Elizabeth T. Cirulli,et al.  SVA: software for annotating and visualizing sequenced human genomes , 2011, Bioinform..

[34]  V. Bansal,et al.  The importance of phase information for human genomics , 2011, Nature Reviews Genetics.

[35]  David R. Murdock,et al.  Whole-Genome Sequencing for Optimized Patient Management , 2011, Science Translational Medicine.

[36]  Jacques Fellay,et al.  WGAViewer: software for genomic annotation of whole genome association studies. , 2008, Genome research.

[37]  Deanna M. Church,et al.  ClinVar: public archive of relationships among sequence variation and human phenotype , 2013, Nucleic Acids Res..

[38]  S. Gabriel,et al.  Analysis of 6,515 exomes reveals a recent origin of most human protein-coding variants , 2012, Nature.

[39]  P. Visscher,et al.  Common SNPs explain a large proportion of heritability for human height , 2011 .

[40]  Wei Zhang,et al.  SCAN: SNP and copy number annotation , 2010, Bioinform..

[41]  David P Bick,et al.  Making a definitive diagnosis: Successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease , 2011, Genetics in Medicine.

[42]  Christian Gilissen,et al.  A de novo paradigm for mental retardation , 2010, Nature Genetics.

[43]  S. Leal,et al.  Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. , 2008, American journal of human genetics.

[44]  Kenneth H. Buetow,et al.  Large-scale analysis of non-synonymous coding region single nucleotide polymorphisms , 2004, Bioinform..

[45]  N. Schork,et al.  Gain‐of‐function ADCY5 mutations in familial dyskinesia with facial myokymia , 2014, Annals of neurology.

[46]  Michael F. Walker,et al.  De novo mutations revealed by whole-exome sequencing are strongly associated with autism , 2012, Nature.

[47]  Rolf Apweiler,et al.  The SWISS-PROT protein sequence data bank and its supplement TrEMBL , 1997, Nucleic Acids Res..

[48]  Emily H Turner,et al.  Targeted Capture and Massively Parallel Sequencing of Twelve Human Exomes , 2009, Nature.

[49]  Christopher B. Burge,et al.  Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals , 2003, RECOMB '03.

[50]  V. Bansal,et al.  Statistical analysis strategies for association studies involving rare variants , 2010, Nature Reviews Genetics.

[51]  Cristina Y. González,et al.  VARIANT: Command Line, Web service and Web interface for fast and accurate functional characterization of variants found by Next-Generation Sequencing , 2012, Nucleic Acids Res..