Las Vegas algorithms for linear and integer programming when the dimension is small

This paper gives an algorithm for solving linear programming problems. For a problem with n constraints and d variables, the algorithm requires an expected<inline-equation><f>O<fen lp="par">d<sup>2</sup>n<rp post="par"></fen>+<fen lp="par">logn<rp post="par"></fen>O<fen lp="par">d<rp post="par"></fen><sup>d/2+O<fen lp="par">1<rp post="par"></fen></sup>+O<fen lp="par">d<sup>4</sup><rad><rcd>n</rcd></rad>logn<rp post="par"></fen></f></inline-equation> arithmetic operations, as<inline-equation><f>n→∞</f></inline-equation>. The constant factors do not depend on d. Also, an algorithm is given for integer linear programming. Let <inline-equation><f><g>4</g></f></inline-equation> bound the number of bits required to specify the rational numbers defining an input constraint or the objective function vector. Let n and d be as before. Then, the algorithm requires expected <inline-equation> <f> O<fen lp="par">2<sup>d</sup>dn+8<sup>d</sup>d<rad><rcd>n<rm>l n<it>n<rm></rm></it></rm></rcd></rad><rm>ln<it>n</it></rm><rp post="par"></fen> +d<sup>o<fen lp="par">d<rp post="par"></fen></sup><g>4</g><rm> ln<it>n</it></rm></f> </inline-equation> operations on numbers with <inline-equation> <f> d<sup>o<fen lp="par">1<rp post="par"></fen></sup><g>4</g></f> </inline-equation> bits, as <inline-equation> <f> n→∞</f> </inline-equation>, where the constant factors do not depend on d or<inline-equation><f><g>4</g></f></inline-equation>to other convex programming problems. For example, an algorithm for finding the smallest sphere enclosing a set of n points in <inline-equation><f>E<sup>d</sup></f></inline-equation>has the same time bound.<?Pub Caret>

[1]  A. Charnes Optimality and Degeneracy in Linear Programming , 1952 .

[2]  V. Klee,et al.  HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .

[3]  Joel H. Spencer,et al.  Puncture Sets , 1974, J. Comb. Theory, Ser. A.

[4]  H. Scarf An observation on the structure of production sets with indivisibilities. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[5]  David E. Bell A Theorem Concerning the Integer Lattice , 1977 .

[6]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[7]  Philip E. Gill,et al.  Practical optimization , 1981 .

[8]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[9]  Jeffrey Scott Vitter,et al.  Faster methods for random sampling , 1984, CACM.

[10]  Sidnie Dresher Feit A Fast Algorithm for the Two-Variable Integer Programming Problem , 1984, JACM.

[11]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[12]  András Frank,et al.  An application of simultaneous approximation in combinatorial optimization , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[13]  Kenneth L. Clarkson,et al.  Linear Programming in O(n * (3_d)_2) Time , 1986, Inf. Process. Lett..

[14]  Martin E. Dyer,et al.  On a Multidimensional Search Technique and its Application to the Euclidean One-Centre Problem , 1986, SIAM J. Comput..

[15]  László Babai,et al.  On Lovász’ lattice reduction and the nearest lattice point problem , 1986, Comb..

[16]  David Haussler,et al.  Epsilon-nets and simplex range queries , 1986, SCG '86.

[17]  Kenneth L. Clarkson,et al.  New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..

[18]  Ravi Kannan,et al.  Minkowski's Convex Body Theorem and Integer Programming , 1987, Math. Oper. Res..

[19]  N. Littlestone Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold Algorithm , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[20]  András Frank,et al.  An application of simultaneous diophantine approximation in combinatorial optimization , 1987, Comb..

[21]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[22]  Emo Welzl,et al.  Partition trees for triangle counting and other range searching problems , 1988, SCG '88.

[23]  Michael J. Todd,et al.  Polynomial Algorithms for Linear Programming , 1988 .

[24]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[25]  Martin E. Dyer,et al.  A randomized algorithm for fixed-dimensional linear programming , 1989, Math. Program..

[26]  N. Alon,et al.  Parallel Linear Programming in Fixed Dimension Almost Surely in Constant Time , 1990, IEEE Annual Symposium on Foundations of Computer Science.

[27]  I. Adler,et al.  A randomization scheme for speeding up algorithms for linear and convex quadratic programming proble , 1990 .

[28]  Philip E. Gill,et al.  Numerical Linear Algebra and Optimization , 1991 .

[29]  Raimund Seidel,et al.  Small-dimensional linear programming and convex hulls made easy , 1991, Discret. Comput. Geom..

[30]  Micha Sharir,et al.  A subexponential bound for linear programming , 1992, SCG '92.

[31]  Gil Kalai,et al.  A subexponential randomized simplex algorithm (extended abstract) , 1992, STOC '92.

[32]  Micha Sharir,et al.  A Subexponential Bound for Linear Programming , 1992, Symposium on Computational Geometry.

[33]  Bernard Chazelle,et al.  On linear-time deterministic algorithms for optimization problems in fixed dimension , 1996, SODA '93.

[34]  Noga Alon,et al.  Parallel linear programming in fixed dimension almost surely in constant time , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.