Arbitrary high order central non-oscillatory schemes on mixed-element unstructured meshes

Abstract In this paper we develop a family of very high-order central (up to 6th-order) non-oscillatory schemes for mixed-element unstructured meshes. The schemes are inherently compact in the sense that the central stencils employed are as compact as possible, and that the directional stencils are reduced in size therefore simplifying their implementation. Their key ingredient is the non-linear combination in a CWENO style similar to Dumbser et al [1] of a high-order polynomial arising from a central stencil with lower-order polynomials from directional stencils. Therefore, in smooth regions of the computational domain the optimum order of accuracy is recovered, while in regions of sharp-gradients the larger influence of the reconstructions from the directional stencils suppress the oscillations. It is the compactness of the directional stencils that increases the chances of at least one of them lying in a region with smooth data, that greatly enhances their robustness compared to classical WENO schemes. The two variants developed are CWENO and CWENOZ schemes, and it is the first time that such very-high-order schemes are designed for mixed-element unstructured meshes. We explore the influence of the linear weights in each of the schemes, and assess their performance in terms of accuracy, robustness and computational cost through a series of stringent 2D and 3D test problems. The results obtained demonstrate the improved robustness that the schemes offer, a parameter of paramount importance for and their potential use for industrial-scale engineering applications.

[1]  Karel Kozel,et al.  Application of Second Order TVD and WENO Schemes in Internal Aerodynamics , 2002, J. Sci. Comput..

[2]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[3]  Matteo Semplice,et al.  Optimal Definition of the Nonlinear Weights in Multidimensional Central WENOZ Reconstructions , 2018, SIAM J. Numer. Anal..

[4]  G. W. Stewart,et al.  Matrix Algorithms: Volume 1, Basic Decompositions , 1998 .

[5]  Panagiotis Tsoutsanis,et al.  Extended bounds limiter for high-order finite-volume schemes on unstructured meshes , 2018, J. Comput. Phys..

[6]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[7]  Haecheon Choi,et al.  Distributed forcing of flow over a circular cylinder , 2005 .

[8]  Jun Zhu,et al.  New Finite Volume Weighted Essentially Nonoscillatory Schemes on Triangular Meshes , 2018, SIAM J. Sci. Comput..

[9]  Freddie D. Witherden,et al.  An extended range of stable-symmetric-conservative Flux Reconstruction correction functions , 2015 .

[10]  Panagiotis Tsoutsanis,et al.  Simple multiple reference frame for high-order solution of hovering rotors with and without ground effect , 2021, Aerospace Science and Technology.

[11]  Michael Dumbser,et al.  Efficient high order accurate staggered semi-implicit discontinuous Galerkin methods for natural convection problems , 2019, Computers & Fluids.

[12]  Michael Dumbser,et al.  High Order ADER Schemes for Continuum Mechanics , 2020, Frontiers in Physics.

[13]  Rémi Abgrall,et al.  On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .

[14]  Jianxian Qiu,et al.  Runge-Kutta Discontinuous Galerkin Method with a Simple and Compact Hermite WENO Limiter on Unstructured Meshes , 2017 .

[15]  Panagiotis Tsoutsanis,et al.  High-order schemes on mixed-element unstructured grids for aerodynamic flows , 2012 .

[16]  Nikolaus A. Adams,et al.  Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws , 2017, J. Comput. Phys..

[17]  Hiroaki Nishikawa Robust and accurate viscous discretization via upwind scheme – I: Basic principle , 2011 .

[18]  Eleuterio F. Toro,et al.  Derivative Riemann solvers for systems of conservation laws and ADER methods , 2006, J. Comput. Phys..

[19]  C. Ollivier-Gooch,et al.  Limiters for Unstructured Higher-Order Accurate Solutions of the Euler Equations , 2008 .

[20]  Michael Dumbser,et al.  Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems , 2007, J. Comput. Phys..

[21]  Panagiotis Tsoutsanis,et al.  Azure: an advanced CFD software suite based on high-resolution and high-order methods , 2015 .

[22]  O. Friedrich,et al.  Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .

[23]  Clement J Welsch The Drag of Finite-length Cylinders Determined from Flight Tests at High Reynolds Numbers for a Mach Number Range from 0.5 to 1.3 , 1953 .

[24]  Songhe Song,et al.  A TVD-type method for 2D scalar Hamilton-Jacobi equations on unstructured meshes , 2006 .

[25]  Jun Zhu,et al.  High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters , 2020, J. Comput. Phys..

[26]  Michael Dumbser,et al.  High order direct Arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes with topology changes , 2019, J. Comput. Phys..

[27]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[28]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[29]  Donghyun You,et al.  A conservative finite volume method for incompressible Navier-Stokes equations on locally refined nested Cartesian grids , 2016, J. Comput. Phys..

[30]  Antony Jameson,et al.  On the Non-linear Stability of Flux Reconstruction Schemes , 2012, J. Sci. Comput..

[31]  Chi-Wang Shu,et al.  A new type of third-order finite volume multi-resolution WENO schemes on tetrahedral meshes , 2020, J. Comput. Phys..

[32]  Wai-Sun Don,et al.  High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws , 2011, J. Comput. Phys..

[33]  Christer Fureby,et al.  Simulation of transition and turbulence decay in the Taylor–Green vortex , 2007 .

[34]  Eleuterio F. Toro,et al.  Finite-volume WENO schemes for three-dimensional conservation laws , 2004 .

[35]  Vladimir A. Titarev,et al.  WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions , 2011, J. Comput. Phys..

[36]  Matthew E. Hubbard,et al.  Regular Article: Multidimensional Slope Limiters for MUSCL-Type Finite Volume Schemes on Unstructured Grids , 1999 .

[37]  Antony Jameson,et al.  A New Class of High-Order Energy Stable Flux Reconstruction Schemes for Triangular Elements , 2012, J. Sci. Comput..

[38]  H. Schardin,et al.  High Frequency Cinematography in the Shock Tube , 1957 .

[39]  Chi-Wang Shu TVB uniformly high-order schemes for conservation laws , 1987 .

[40]  Claus-Dieter Munz,et al.  A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes , 2007, J. Comput. Phys..

[41]  Wanai Li,et al.  High‐order k‐exact WENO finite volume schemes for solving gas dynamic Euler equations on unstructured grids , 2012 .

[42]  Antony Jameson,et al.  Energy stable flux reconstruction schemes for advection-diffusion problems on triangles , 2013, J. Comput. Phys..

[44]  Antony Jameson,et al.  High-Order Flux Reconstruction Schemes for LES on Tetrahedral Meshes , 2015 .

[45]  Michael Dumbser,et al.  A hyperbolic reformulation of the Serre-Green-Naghdi model for general bottom topographies , 2020, Computers & Fluids.

[46]  Zhiliang Xu,et al.  Hierarchical reconstruction for spectral volume method on unstructured grids , 2009, J. Comput. Phys..

[47]  Michael Dumbser,et al.  A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers , 2016, J. Comput. Phys..

[48]  Panagiotis Tsoutsanis,et al.  Hovering rotor solutions by high-order methods on unstructured grids , 2020 .

[49]  Fermín Navarrina,et al.  A new shock-capturing technique based on Moving Least Squares for higher-order numerical schemes on unstructured grids , 2010 .

[50]  Nikolaus A. Adams,et al.  A family of high-order targeted ENO schemes for compressible-fluid simulations , 2016, J. Comput. Phys..

[51]  A. Berm'udez,et al.  A staggered semi-implicit hybrid FV/FE projection method for weakly compressible flows , 2020, J. Comput. Phys..

[52]  Ignasi Colominas,et al.  A reduced-dissipation WENO scheme with automatic dissipation adjustment , 2021, J. Comput. Phys..

[53]  J. Wallace,et al.  The velocity field of the turbulent very near wake of a circular cylinder , 1996 .

[54]  M. de la Llave Plata,et al.  Development of a multiscale LES model in the context of a modal discontinuous Galerkin method , 2016 .

[55]  Wai-Sun Don,et al.  An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws , 2008, J. Comput. Phys..

[56]  Panagiotis Tsoutsanis,et al.  Implementation of a low-mach number modification for high-order finite-volume schemes for arbitrary hybrid unstructured meshes , 2016 .

[57]  P. Moin,et al.  Numerical studies of flow over a circular cylinder at ReD=3900 , 2000 .

[58]  Carl Ollivier-Gooch,et al.  Accuracy analysis of unstructured finite volume discretization schemes for diffusive fluxes , 2014 .

[59]  Jonathan R. Bull,et al.  Simulation of the Taylor–Green Vortex Using High-Order Flux Reconstruction Schemes , 2015 .

[60]  Leland Jameson,et al.  Numerical Convergence Study of Nearly Incompressible, Inviscid Taylor–Green Vortex Flow , 2005, J. Sci. Comput..

[61]  Eleuterio F. Toro,et al.  ADER schemes for three-dimensional non-linear hyperbolic systems , 2005 .

[62]  Kunihiko Taira,et al.  Two-dimensional compressible viscous flow around a circular cylinder , 2015, Journal of Fluid Mechanics.

[63]  Gabriella Puppo,et al.  Compact Central WENO Schemes for Multidimensional Conservation Laws , 1999, SIAM J. Sci. Comput..

[64]  Michael Dumbser,et al.  Central Weighted ENO Schemes for Hyperbolic Conservation Laws on Fixed and Moving Unstructured Meshes , 2017, SIAM J. Sci. Comput..

[65]  M. Darwish,et al.  TVD schemes for unstructured grids , 2003 .

[66]  Dinshaw S. Balsara,et al.  An efficient class of WENO schemes with adaptive order for unstructured meshes , 2020, J. Comput. Phys..

[67]  Xiangxiong Zhang,et al.  Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes , 2011, Journal of Scientific Computing.

[68]  Shiyi Chen,et al.  Mach Number Effect of Compressible Flow Around a Circular Cylinder , 2016 .

[69]  Michael Dumbser,et al.  High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids , 2015, J. Comput. Phys..

[70]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[71]  Panagiotis Tsoutsanis,et al.  Adaptive mesh refinement techniques for high-order finite-volume WENO schemes , 2016 .

[72]  Panagiotis Tsoutsanis,et al.  Stencil selection algorithms for WENO schemes on unstructured meshes , 2019, J. Comput. Phys. X.

[73]  M. J. Castro,et al.  ADER schemes on unstructured meshes for nonconservative hyperbolic systems: Applications to geophysical flows , 2009 .

[74]  Michael Dumbser,et al.  A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes , 2016, J. Comput. Phys..

[75]  Matteo Semplice,et al.  Efficient Implementation of Adaptive Order Reconstructions , 2020, J. Sci. Comput..

[76]  Dimitris Drikakis,et al.  WENO schemes on arbitrary unstructured meshes for laminar, transitional and turbulent flows , 2014, J. Comput. Phys..

[77]  Panagiotis Tsoutsanis,et al.  Improvement of the computational performance of a parallel unstructured WENO finite volume CFD code for Implicit Large Eddy Simulation , 2018, Computers & Fluids.

[78]  Stéphane Clain,et al.  Monoslope and multislope MUSCL methods for unstructured meshes , 2010, J. Comput. Phys..

[79]  George Em Karniadakis,et al.  Dynamics and low-dimensionality of a turbulent near wake , 2000, Journal of Fluid Mechanics.

[80]  Li Wanai A High-order Unstructured-grid WENO FVM for Compressible Flow Computation , 2011 .

[81]  Spencer J. Sherwin,et al.  Connections between the discontinuous Galerkin method and high‐order flux reconstruction schemes , 2014 .

[82]  Michael Dumbser,et al.  Spectral semi-implicit and space-time discontinuous Galerkin methods for the incompressible Navier-Stokes equations on staggered Cartesian grids , 2016, 1602.05806.

[83]  Antonis F. Antoniadis,et al.  Numerical Accuracy in RANS Computations of High-Lift Multi-element Airfoil and Aicraft Configurations , 2015 .

[84]  Jörg Franke,et al.  Large eddy simulation of the flow past a circular cylinder at ReD=3900 , 2002 .

[85]  M. Breuer LARGE EDDY SIMULATION OF THE SUBCRITICAL FLOW PAST A CIRCULAR CYLINDER: NUMERICAL AND MODELING ASPECTS , 1998 .

[86]  Claus-Dieter Munz,et al.  High‐order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations , 2014 .

[87]  Stéphane Clain,et al.  A high-order finite volume method for systems of conservation laws - Multi-dimensional Optimal Order Detection (MOOD) , 2011, J. Comput. Phys..

[88]  D. Drikakis,et al.  Comparison of structured- and unstructured-grid, compressible and incompressible methods using the vortex pairing problem , 2015 .

[89]  Se-Myong Chang,et al.  On the shock–vortex interaction in Schardin's problem , 2000 .

[90]  Ruo Li,et al.  A Robust WENO Type Finite Volume Solver for Steady Euler Equations on Unstructured Grids , 2011 .

[91]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[92]  M. Semplice,et al.  Adaptive Mesh Refinement for Hyperbolic Systems Based on Third-Order Compact WENO Reconstruction , 2014, Journal of Scientific Computing.

[93]  Zhiliang Xu,et al.  Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells , 2009, J. Comput. Phys..

[94]  Lin Fu,et al.  A very-high-order TENO scheme for all-speed gas dynamics and turbulence , 2019, Comput. Phys. Commun..

[95]  J. Baeder,et al.  A Central Compact-Reconstruction WENO Method for Hyperbolic Conservation Laws , 2018 .

[96]  Clinton P. T. Groth,et al.  High-order solution-adaptive central essentially non-oscillatory (CENO) method for viscous flows , 2011, J. Comput. Phys..

[97]  Michael Dumbser,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[98]  Michael Dumbser,et al.  Central WENO Subcell Finite Volume Limiters for ADER Discontinuous Galerkin Schemes on Fixed and Moving Unstructured Meshes , 2019, Communications in Computational Physics.

[99]  S. Orszag,et al.  Small-scale structure of the Taylor–Green vortex , 1983, Journal of Fluid Mechanics.

[100]  Carl F. Ollivier Gooch,et al.  Higher-Order Finite Volume Solution Reconstruction on Highly Anisotropic Meshes , 2013 .

[101]  Michael Dumbser,et al.  Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..

[102]  Carl Ollivier-Gooch,et al.  Accuracy preserving limiter for the high-order accurate solution of the Euler equations , 2009, J. Comput. Phys..

[103]  Gabriella Puppo,et al.  Cool WENO schemes , 2017, Computers & Fluids.

[104]  E. J. Belin de Chantemèle,et al.  Long Term High Fat Diet Treatment: An Appropriate Approach to Study the Sex-Specificity of the Autonomic and Cardiovascular Responses to Obesity in Mice , 2017, Front. Physiol..

[105]  Stéphane Clain,et al.  Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials , 2012 .

[106]  Ivar S. Ertesvåg,et al.  Large-Eddy Simulation of the Flow Over a Circular Cylinder at Reynolds Number 3900 Using the OpenFOAM Toolbox , 2012 .

[107]  Jianxian Qiu,et al.  A hybrid Hermite WENO scheme for hyperbolic conservation laws , 2019, J. Comput. Phys..

[108]  Michael Dumbser,et al.  On High Order ADER Discontinuous Galerkin Schemes for First Order Hyperbolic Reformulations of Nonlinear Dispersive Systems , 2021, Journal of Scientific Computing.

[109]  Panagiotis Tsoutsanis,et al.  WENO schemes on unstructured meshes using a relaxed a posteriori MOOD limiting approach , 2020 .

[110]  J. Macha Drag of Circular Cylinders at Transonic Mach Numbers , 1977 .

[111]  Hong Luo,et al.  A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on three-dimensional hybrid grids , 2017 .

[112]  D. Drikakis,et al.  Addressing the challenges of implementation of high-order finite-volume schemes for atmospheric dynamics on unstructured meshes , 2016 .

[113]  Jun Zhu,et al.  Hermite WENO Schemes and Their Application as Limiters for Runge-Kutta Discontinuous Galerkin Method, III: Unstructured Meshes , 2009, J. Sci. Comput..

[114]  Jianxian Qiu,et al.  High-order Runge-Kutta discontinuous Galerkin methods with a new type of multi-resolution WENO limiters on triangular meshes , 2020 .

[115]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[116]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[117]  Fermín Navarrina,et al.  An a posteriori-implicit turbulent model with automatic dissipation adjustment for Large Eddy Simulation of compressible flows , 2020, Computers & Fluids.

[118]  Panagiotis Tsoutsanis,et al.  Low-Mach number treatment for Finite-Volume schemes on unstructured meshes , 2018, Appl. Math. Comput..

[119]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[120]  João Luiz F. Azevedo,et al.  Improved High-Order Spectral Finite Volume Method Implementation for Aerodynamic Flows , 2009 .

[121]  Dimitris Drikakis,et al.  WENO schemes for mixed-elementunstructured meshes , 2010 .

[122]  Ilya Peshkov,et al.  On a pure hyperbolic alternative to the Navier-Stokes equations , 2014 .

[123]  Eleuterio F. Toro,et al.  Design and analysis of ADER-type schemes for model advection-diffusion-reaction equations , 2016, J. Comput. Phys..

[124]  Chi-Wang Shu,et al.  Central WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes , 2006, SIAM J. Sci. Comput..

[125]  Panagiotis Tsoutsanis,et al.  High-Order Methods for Hypersonic Shock Wave Turbulent Boundary Layer Interaction Flow , 2015 .

[126]  R. LeVeque High-resolution conservative algorithms for advection in incompressible flow , 1996 .

[127]  James P. Collins,et al.  Numerical Solution of the Riemann Problem for Two-Dimensional Gas Dynamics , 1993, SIAM J. Sci. Comput..

[128]  Michael Dumbser,et al.  Semi-implicit discontinuous Galerkin methods for the incompressible Navier–Stokes equations on adaptive staggered Cartesian grids , 2016, 1612.09558.

[129]  Jun Zhu,et al.  A simple, high-order and compact WENO limiter for RKDG method , 2020, Comput. Math. Appl..

[130]  Freddie D. Witherden,et al.  On the utility of GPU accelerated high-order methods for unsteady flow simulations: A comparison with industry-standard tools , 2017, J. Comput. Phys..

[131]  Oliver Kolb,et al.  Maximum Principle Satisfying CWENO Schemes for Nonlocal Conservation Laws , 2019, SIAM J. Sci. Comput..

[132]  Rainald Löhner,et al.  A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids , 2007, J. Comput. Phys..

[133]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[134]  Jean-Pierre Croisille,et al.  Stability analysis of the cell centered finite-volume Muscl method on unstructured grids , 2009, Numerische Mathematik.