Low-Temperature Molten Sodium Batteries

[1]  L. Small,et al.  Hybrid Solid State “Chaperone” Phases to Improve Solid State Sodium Electrolytes , 2021, ECS Meeting Abstracts.

[2]  L. Small,et al.  Materials Development for High-Performance Interfaces in Low-Temperature Molten Sodium Batteries. , 2021, Proposed for presentation at the ACS Spring 2021 held April 5-30, 2021 in Virtual, Virtual..

[3]  L. Small,et al.  High-Performance Low-Temperature Molten Sodium Batteries Enabled by Improved Charge Transfer Across Interfaces. , 2021, Proposed for presentation at the 2021 Virtual MRS Spring Meeting & Exhibit held April 17-23, 2021..

[4]  L. Small,et al.  Electrochemistry of the NaI-AlBr3 Low Temperature Molten Salt System:Implications for Applied Battery Performance. , 2021, Proposed for presentation at the 2021 MRS Spring Meeting & Exhibit held April 17 - March 23, 2021 in virtual..

[5]  L. Small,et al.  Implementing Low Temperature Strategies to Advance “Really Cool” Molten Sodium Batteries , 2020 .

[6]  E. Coker,et al.  Solid State Materials to Enable Molten Sodium Batteries. , 2020, Proposed for presentation at the 2020 Virtual Materials Research Society Spring/Fall Meeting & Exhibit held November 27 - December 4, 2020 in Virtual..

[7]  L. Small,et al.  Mechanical characterization of montmorillonite sodium ion conductors. , 2020, Proposed for presentation at the Spring/Fall 2020 Materials Research Society Virtual Meeting held November 29 - December 4, 2020..

[8]  L. Small,et al.  Engineering Ceramic Electrolyte Interfaces for Low-Temperature Molten Sodium Batteries. , 2020, Proposed for presentation at the 2020 Virtual MRS Spring/Fall Meeting & Exhibit held November 27 - December 4, 2020..

[9]  Mark A. Rodriguez,et al.  Tin-based ionic chaperone phases to improve low temperature molten sodium–NaSICON interfaces , 2020, Journal of Materials Chemistry A.

[10]  Z. Wen,et al.  Ni-less cathode with 3D free-standing conductive network for planar Na-NiCl2 batteries , 2020 .

[11]  L. Small,et al.  Solid State Ion Conductors to Enable Low Temperature Molten Sodium Batteries , 2020, ECS Meeting Abstracts.

[12]  L. Small,et al.  Advancing Low Temperature Molten Sodium Batteries By Interfacial Engineering of Ceramic Electrolytes , 2020, ECS Meeting Abstracts.

[13]  Eunsu Paek,et al.  Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. , 2019, Chemical reviews.

[14]  G. Nikiforidis,et al.  High and intermediate temperature sodium–sulfur batteries for energy storage: development, challenges and perspectives , 2019, RSC advances.

[15]  G. Nikiforidis,et al.  An Electrochemical Study on the Cathode of the Intermediate Temperature Tubular Sodium-Sulfur (NaS) Battery , 2019, Journal of The Electrochemical Society.

[16]  H. Chang,et al.  Bismuth Islands for Low-Temperature Sodium-Beta Alumina Batteries. , 2019, ACS applied materials & interfaces.

[17]  Jeff F. Bonnett,et al.  An Intermediate-Temperature High-Performance Na–ZnCl2 Battery , 2018, ACS omega.

[18]  L. Small,et al.  Electrochemistry of the NaI-AlCl3 Molten Salt System for Use as Catholyte in Sodium Metal Batteries , 2018 .

[19]  Jeff F. Bonnett,et al.  An advanced Na-NiCl2 battery using bi-layer (dense/micro-porous) β″-alumina solid-state electrolytes , 2018, Journal of Power Sources.

[20]  Antonio C. Baclig,et al.  High-Voltage, Room-Temperature Liquid Metal Flow Battery Enabled by Na-K|K-β″-Alumina Stability , 2018, Joule.

[21]  L. Shaw A High Capacity, Room Temperature, Hybrid Flow Battery Consisting of Liquid Na-Cs Anode and Aqueous NaI Catholyte , 2018, Batteries.

[22]  Jeff F. Bonnett,et al.  “Ni‐Less” Cathodes for High Energy Density, Intermediate Temperature Na–NiCl2 Batteries , 2018 .

[23]  Yingqi Lu,et al.  Sodium–Sulfur Flow Battery for Low‐Cost Electrical Storage , 2018 .

[24]  D. Ingersoll,et al.  Next generation molten NaI batteries for grid scale energy storage , 2017 .

[25]  Sen Xin,et al.  An Inverse Aluminum Battery: Putting the Aluminum as the Cathode , 2017 .

[26]  M. Holzapfel,et al.  Medium-temperature molten sodium batteries with aqueous bromine and iodine cathodes , 2017 .

[27]  Jeff F. Bonnett,et al.  Development of intermediate temperature sodium nickel chloride rechargeable batteries using conventional polymer sealing technologies , 2017 .

[28]  V. Sprenkle,et al.  Advanced Na-NiCl2 Battery Using Nickel-Coated Graphite with Core-Shell Microarchitecture. , 2017, ACS applied materials & interfaces.

[29]  R. Kee,et al.  Computational modeling of sodium-iodine secondary batteries , 2016 .

[30]  Vincent L. Sprenkle,et al.  Advanced intermediate temperature sodium–nickel chloride batteries with ultra-high energy density , 2016, Nature Communications.

[31]  V. Sprenkle,et al.  An Ambient Temperature Molten Sodium-Vanadium Battery with Aqueous Flowing Catholyte. , 2016, ACS applied materials & interfaces.

[32]  Sai Bhavaraju,et al.  Low temperature performance of sodium–nickel chloride batteries with NaSICON solid electrolyte , 2015 .

[33]  T. Zawodzinski,et al.  High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation , 2015 .

[34]  Vincent L. Sprenkle,et al.  Room Temperature, Hybrid Sodium-Based Flow Batteries with Multi-Electron Transfer Redox Reactions , 2015, Scientific Reports.

[35]  Vilayanur V. Viswanathan,et al.  An Advanced Na–FeCl2 ZEBRA Battery for Stationary Energy Storage Application , 2015 .

[36]  Hui Yang,et al.  Advanced intermediate temperature sodium copper chloride battery , 2014 .

[37]  Jun Liu,et al.  Liquid-metal electrode to enable ultra-low temperature sodium–beta alumina batteries for renewable energy storage , 2014, Nature Communications.

[38]  E. Peled,et al.  Challenges and obstacles in the development of sodium–air batteries , 2013 .

[39]  R. Kee,et al.  Computational model of a sodium–copper–iodide rechargeable battery , 2013 .

[40]  David M. Reed,et al.  Wetting of sodium on β''-Al2O3/YSZ composites for low temperature planar sodium-metal halide batteries , 2013 .

[41]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[42]  Zhenguo Yang,et al.  Novel ternary molten salt electrolytes for intermediate-temperature sodium/nickel chloride batteries , 2012 .

[43]  Zhenguo Yang,et al.  The effects of temperature on the electrochemical performance of sodium–nickel chloride batteries , 2012 .

[44]  Thomas F. Jaramillo,et al.  Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy , 2012 .

[45]  Zhenguo Yang,et al.  Sodium-beta alumina batteries: Status and challenges , 2010 .

[46]  Zhenguo Yang,et al.  Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives , 2010 .

[47]  Maria Skyllas-Kazacos,et al.  Chemical modification of graphite electrode materials for vanadium redox flow battery application—part II. Acid treatments , 1992 .

[48]  Maria Skyllas-Kazacos,et al.  Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment , 1992 .

[49]  G. Weddigen Electrical Data of Sodium/Sulfur Cells Operating with Dissolved Catholyte , 1980 .

[50]  K. M. Abraham,et al.  A low temperature NaS battery incorporating A soluble S cathode , 1978 .

[51]  N. Gregory,et al.  The Interaction of Aluminum Bromide and Sodium Iodide , 1950 .

[52]  Jeff F. Bonnett,et al.  Elucidating the role of anionic chemistry towards high-rate intermediate-temperature Na-metal halide batteries , 2020 .

[53]  Jeff F. Bonnett,et al.  Decorating b′′-alumina solid-state electrolyte with submicron Pb spherical particles to overcome liquid-solid interface resistance , 2018 .

[54]  E. Roth,et al.  Studies on the thermal breakdown of common Li-ion battery electrolyte components , 2015 .

[55]  Zhenguo Yang,et al.  Advanced Intermediate-Temperature Na-S Battery , 2013 .