Methods to choose the best Hidden Markov Model topology for improving maintenance policy

Prediction of physical particular phenomenon is based on partial knowledge of this phenomenon. Theses knowledges help us to conceptualize this phenomenon according to di erent models. Hidden Markov Models (HMM) can be used for modeling complex processes. We use this kind of models as tool for fault diagnosis systems. Nowadays, industrial robots living in stochastic environment need faults detection to prevent any breakdown. In this paper, we wish to nd the best Hidden Markov Model topologies to be used in predictive maintenance system. To this end, we use a synthetic Hidden Markov Model in order to simulate a real industrial CMMS. In a stochastic way, we evaluate relevance of Hidden Markov Models parameters, without a priori knowledges. After a brief presentation of a Hidden Markov Model, we present the most used selection criteria of models in current literature. We support our study by an example of simulated industrial process by using our synthetic model. Therefore, we evaluate output parameters of the various tested models on this process: topologies, learning algorithms, observations distributions, epistemic uncertainties. Finally, we come up with the best model which will be used to improve maintenance policy and worker safety.

[1]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[2]  Biing-Hwang Juang,et al.  The segmental K-means algorithm for estimating parameters of hidden Markov models , 1990, IEEE Trans. Acoust. Speech Signal Process..

[3]  J. Steinebach E. L. Lehmann, J. P. Romano: Testing statistical hypotheses , 2006 .

[4]  Frédéric Kratz,et al.  Use of HMM for evaluation of maintenance activities , 2010 .

[5]  Jean-René Barra Testing Statistical Hypotheses , 1981 .

[6]  Mohamed Slimane,et al.  Maintenance policy: degradation laws versus hidden Markov model availability indicator , 2012 .

[7]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[8]  Didier Imbault,et al.  Maximum entropy principle and texture formation , 2000 .

[9]  Erhard Reschenhofer,et al.  Prediction with vague prior knowledge , 1996 .

[10]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[11]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[12]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[13]  Frédéric Kratz,et al.  Evaluation of relevance of stochastic parameters on Hidden Markov Models , 2011 .

[14]  Thierry Lafouge,et al.  On the relation between the Maximum Entropy Principle and the Principle of Least Effort , 2006, Math. Comput. Model..

[15]  Manuel Avila Optimisation de modèles markoviens pour la reconnaissance de l'écrit , 1996 .

[16]  Joseph E. Cavanaugh,et al.  Bootstrap variants of the Akaike information criterion for mixed model selection , 2008, Comput. Stat. Data Anal..

[17]  S. Chen,et al.  Speaker, Environment and Channel Change Detection and Clustering via the Bayesian Information Criterion , 1998 .

[18]  Fehmi Cirak,et al.  ZEITSCHRIFT FÜR ANGEWANDTE MATHEMATIK UND MECHANIK , 1952, Über Stammfaktoren bei ternären quadratischen Formen.

[19]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[20]  Bernard Bercu,et al.  Modélisation stochastique et simulation - Cours et applications , 2007 .

[21]  Emilie Lebarbier,et al.  Le critère BIC : fondements théoriques et interprétation , 2004 .

[22]  Malik Ghallab,et al.  Robot introspection through learned hidden Markov models , 2006, Artif. Intell..

[23]  A. Willsky,et al.  Maximum Entropy Relaxation for Graphical Model Selection Given Inconsistent Statistics , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.

[24]  S. Iyengar,et al.  Shannon Entropy Based Time-Dependent Deterministic Sampling for Efficient "On-the-Fly" Quantum Dynamics and Electronic Structure. , 2011, Journal of chemical theory and computation.

[25]  L. Goddard Information Theory , 1962, Nature.