Influence of thermomechanical fatigue loading conditions on the nanostructure of secondary hardening steels

[1]  H. Leitner,et al.  Thermomechanical Fatigue Testing of Dual Hardening Tool Steels , 2019, steel research international.

[2]  H. Leitner,et al.  Early Stages of Precipitate Formation in a Dual Hardening Steel , 2019, HTM Journal of Heat Treatment and Materials.

[3]  H. Leitner,et al.  Microstructural evolution of a dual hardening steel during heat treatment. , 2019, Micron.

[4]  F. Grün,et al.  Material behaviour of a dual hardening steel under thermomechanical loading , 2019, Fatigue & Fracture of Engineering Materials & Structures.

[5]  H. Maier,et al.  Zyklische Festigkeit und Verformung , 2019, Handbuch Hochtemperatur-Werkstofftechnik.

[6]  J. Aktaa,et al.  High-temperature low-cycle fatigue behavior of a 9Cr-ODS steel: Part 2 - hold time influence, microstructural evolution and damage characteristics , 2018, Materials Science and Engineering: A.

[7]  J. Aktaa,et al.  High-temperature low-cycle fatigue behavior of a 9Cr-ODS steel: Part 1 - pure fatigue, microstructure evolution and damage characteristics , 2017 .

[8]  Gilles Dour,et al.  Role of heat-flux density and mechanical loading on the microscopic heat-checking of high temperature tool steels under thermal fatigue experiments , 2013 .

[9]  Gilles Dour,et al.  Image analysis of microscopic crack patterns applied to thermal fatigue heat-checking of high temperature tool steels. , 2013, Micron.

[10]  M. Mathon,et al.  Cementite-free martensitic steels: A new route to develop high strength/high toughness grades by modifying the conventional precipitation sequence during tempering , 2012 .

[11]  Anil K. Sachdev,et al.  Three-Dimensional (3-D) Atom Probe Tomography of a Cu-Precipitation-Strengthened, Ultrahigh-Strength Carburized Steel , 2012, Metallurgical and Materials Transactions A.

[12]  M. Mathon,et al.  Small-angle neutron scattering of multiphase secondary hardening steels , 2012, Journal of Materials Science.

[13]  F. Danoix,et al.  Atom probe tomography investigation of assisted precipitation of secondary hardening carbides in a medium carbon martensitic steels , 2011, Journal of microscopy.

[14]  David N. Seidman,et al.  Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel , 2011 .

[15]  J. Tušek,et al.  Thermo fatigue cracking of die casting dies , 2012 .

[16]  P. Staron,et al.  Kinetics of Precipitation in a Complex Hot‐work Tool Steel , 2010 .

[17]  Janez Tušek,et al.  Thermal fatigue of materials for die-casting tooling , 2008 .

[18]  H. Christ Effect of environment on thermomechanical fatigue life , 2007 .

[19]  Martin Riedler,et al.  Lifetime simulation of thermo-mechanically loaded components , 2007 .

[20]  H. Clemens,et al.  Comparison of NiAl precipitation in a medium carbon secondary hardening steel and C-free PH13-8 maraging steel , 2006 .

[21]  S. L. Roux,et al.  Experimental conditions and environment effects on thermal fatigue damage accumulation and life of die-casting steel X38CrMoV5 (AISI H11) , 2006 .

[22]  D. Blavette,et al.  3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy , 2006 .

[23]  C. Levaillant,et al.  RELATIONSHIP BETWEEN MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A 5% CR HOT WORK TOOL STEEL , 2006 .

[24]  J. Bergström,et al.  High temperature fatigue of tool steels , 2006 .

[25]  K. Hono,et al.  Microstructural evolution in 13Cr-8Ni-2.5Mo-2Al martensitic precipitation-hardened stainless steel , 2005 .

[26]  C. Levaillant,et al.  Relationship between microstructure and mechanical properties of a 5% Cr tempered martensitic tool steel , 2004 .

[27]  A. Persson Strain‐based approach to crack growth and thermal fatigue life of hot work tool steels , 2004 .

[28]  S. L. Roux,et al.  Heat-checking of hot work tool steels , 2002 .

[29]  Jean Sylvain,et al.  An investigation on heat checking of hot work tool steels , 1999 .

[30]  C. Tsai,et al.  Effects of temperature on the cyclic deformation behaviour and microstructural changes of 12Cr-1MoVW martensitic stainless steel , 1994 .

[31]  Ø. Grong,et al.  Process modelling applied to 6082-T6 aluminium weldments—I. Reaction kinetics , 1991 .

[32]  Ø. Grong,et al.  Process modelling applied to 6082-T6 aluminium weldments—II. Applications of model , 1991 .

[33]  W. Garrison,et al.  A preliminary study of the influence of separate and combined aluminum and nickel additions on the properties of a secondary hardening steel , 1988 .

[34]  W. Garrison,et al.  An approach to developing an alternative hot work die steel , 1988 .

[35]  C. Laird,et al.  Changes in morphology and composition of carbides during cyclic deformation at room and elevated temperature and their effect on mechanical properties of CrMoV steel , 1985 .

[36]  M. Svensson,et al.  Thermal-fatigue behaviour of hot-work tool steels , 1981 .

[37]  R. Fournelle,et al.  Fatigue behavior of a precipitation hardening Ni−Al−Cu medium carbon steel , 1976 .

[38]  Carl Wagner,et al.  Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald‐Reifung) , 1961, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.

[39]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .