Empirical Processes, Typical Sequences, and Coordinated Actions in Standard Borel Spaces

This paper proposes a new notion of typical sequences on a wide class of abstract alphabets (so-called standard Borel spaces), which is based on approximations of memoryless sources by empirical distributions uniformly over a class of measurable “test functions.” In the finite-alphabet case, we can take all uniformly bounded functions and recover the usual notion of strong typicality (or typicality under the total variation distance). For a general alphabet, however, this function class turns out to be too large, and must be restricted. With this in mind, we define typicality with respect to any Glivenko-Cantelli function class (i.e., a function class that admits a Uniform Law of Large Numbers) and demonstrate its power by giving simple derivations of the fundamental limits on the achievable rates in several source coding scenarios, in which the relevant operational criteria pertain to reproducing empirical averages of a general-alphabet stationary memoryless source with respect to a suitable function class.

[1]  Ram Zamir,et al.  Mismatched codebooks and the role of entropy coding in lossy data compression , 2006, IEEE Transactions on Information Theory.

[2]  Chris Preston,et al.  Some Notes on Standard Borel and Related Spaces , 2008, 0809.3066.

[3]  Sergio Verdú,et al.  Approximation theory of output statistics , 1993, IEEE Trans. Inf. Theory.

[4]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[5]  Tamás Linder,et al.  Rate-Constrained Simulation and Source Coding i.i.d. Sources , 2010, IEEE Transactions on Information Theory.

[6]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[7]  J. Lamperti ON CONVERGENCE OF STOCHASTIC PROCESSES , 1962 .

[8]  P. R. Kumar,et al.  Learning by canonical smooth estimation. I. Simultaneous estimation , 1996, IEEE Trans. Autom. Control..

[9]  A. Kolmogorov,et al.  Entropy and "-capacity of sets in func-tional spaces , 1961 .

[10]  Giuseppe Longo,et al.  The information theory approach to communications , 1977 .

[11]  Sergio Verdú,et al.  Simulation of random processes and rate-distortion theory , 1996, IEEE Trans. Inf. Theory.

[12]  R. Taylor A User's Guide to Measure-Theoretic Probability , 2003 .

[13]  S. Geer Empirical Processes in M-Estimation , 2000 .

[14]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[15]  John C. Kieffer,et al.  A method for proving multiterminal source coding theorems , 1981, IEEE Trans. Inf. Theory.

[16]  Imre Csisźar,et al.  The Method of Types , 1998, IEEE Trans. Inf. Theory.

[17]  Robert M. Gray,et al.  Probability, Random Processes, And Ergodic Properties , 1987 .

[18]  Haim H. Permuter,et al.  Coordination Capacity , 2009, IEEE Transactions on Information Theory.

[19]  S. R. Jammalamadaka,et al.  Empirical Processes in M-Estimation , 2001 .

[20]  A. Barron THE STRONG ERGODIC THEOREM FOR DENSITIES: GENERALIZED SHANNON-MCMILLAN-BREIMAN THEOREM' , 1985 .

[21]  P. R. Kumar,et al.  Learning by Canonical Smooth Es timation-Part I: Simultaneous Estimation , 1996 .

[22]  James G. Dunham Abstract Alphabet Sliding-Block Entropy Compression Coding with a Fidelity Criterion , 1980 .

[23]  John C. Kieffer,et al.  Extension of source coding theorems for block codes to sliding-block codes , 1980, IEEE Trans. Inf. Theory.

[24]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[25]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[26]  Aaron D. Wyner,et al.  The rate-distortion function for source coding with side information at the decoder , 1976, IEEE Trans. Inf. Theory.

[27]  Dudley,et al.  Real Analysis and Probability: Integration , 2002 .

[28]  O. F. Cook The Method of Types , 1898 .

[29]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[30]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[31]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[32]  Serap A. Savari,et al.  Communicating Probability Distributions , 2007, IEEE Transactions on Information Theory.

[33]  Aaron D. Wyner,et al.  On source coding with side information at the decoder , 1975, IEEE Trans. Inf. Theory.

[34]  Maxim Raginsky,et al.  Achievability results for learning under communication constraints , 2009, 2009 Information Theory and Applications Workshop.

[35]  Tsachy Weissman,et al.  The minimax distortion redundancy in noisy source coding , 2003, IEEE Trans. Inf. Theory.

[36]  Gerhard Kramer,et al.  Topics in Multi-User Information Theory , 2008, Found. Trends Commun. Inf. Theory.

[37]  Patrick Mitran Typical Sequences for Polish Alphabets , 2010, ArXiv.

[38]  J. Steele Empirical Discrepancies and Subadditive Processes , 1978 .

[39]  Terrence M. Adams,et al.  Uniform convergence of Vapnik–Chervonenkis classes under ergodic sampling , 2010, 1010.3162.

[40]  R. Gray Entropy and Information Theory , 1990, Springer New York.

[41]  P. R. Kumar,et al.  Learning by canonical smooth estimation. II. Learning and choice of model complexity , 1996, IEEE Trans. Autom. Control..