Chirality- and thickness-dependent thermal conductivity of few-layer graphene: a molecular dynamics study

The thermal conductivity of graphene nanoribbons (layer from 1 to 8 atomic planes) is investigated by using the nonequilibrium molecular dynamics method. We present that the room-temperature thermal conductivity decays monotonically with the number of the layers in few-layer graphene. The superiority of zigzag graphene in thermal conductivity is only available in high temperature region and disappears in multilayer case. It is explained that the phonon spectral shrink in high frequency induces the change in thermal conductivity. It is also reported that single-layer graphene has better ballistic transport property than the multilayer graphene.

[1]  Samia Subrina,et al.  Dimensional crossover of thermal transport in few-layer graphene. , 2010, Nature materials.

[2]  Bambi Hu,et al.  Suppression of thermal conductivity in graphene nanoribbons with rough edges , 2010, 1006.4879.

[3]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[4]  Baowen Li,et al.  Negative differential thermal resistance and thermal transistor , 2006 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[7]  C. N. Lau,et al.  PROOF COPY 020815APL Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits , 2008 .

[8]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[9]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[10]  B. Yakobson,et al.  Ballistic thermal conductance of graphene ribbons. , 2010, Nano letters.

[11]  P. G. Klemens,et al.  Theory of the A-Plane Thermal Conductivity of Graphite , 2000 .

[12]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[13]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[14]  Shigeo Maruyama,et al.  Non-Fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations , 2006 .

[15]  Jiuning Hu,et al.  Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. , 2009, Nano letters.

[16]  Hashem Rafii-Tabar,et al.  Computational physics of carbon nanotubes , 2007 .

[17]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[18]  Chirality dependence of the thermal conductivity of carbon nanotubes , 2004 .

[19]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[20]  Baowen Li,et al.  Thermal rectification in carbon nanotube intramolecular junctions: Molecular dynamics calculations , 2007, 0707.4241.

[21]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[22]  Thermal conduction in classical low-dimensional lattices , 2001, cond-mat/0112193.

[23]  Baowen Li,et al.  Thermal rectifiers from deformed carbon nanohorns , 2008, 0805.0322.