From microwatt to gigabit: challenges of modern radio design

On the brink of introducing the fifth generation (5G) of cellular networks, the art of radio-frequency (RF) integrated circuit design has never seen such a wide spread of diverging requirements:On the one hand, ubiquitous sensor networks are mandating power budgets in the order of micro-watt. They should be constructed as energy-autonomous, wireless, low-cost sensor nodes. This demand is caused by massive deployment scenarios of billions of devices, which makes wires and batteries unpractical. As a result, the desire for the radio nodes to harvest their operational energy from the environment emerges.On the other hand, the recent and ongoing realization of gigabit-per-second capable cellular modems is driving hardware and power requirements to extremes. To overcome hardware limitations, introduced by analog impairments, digital correction and alignment algorithms are employed for compensation. These factors call for usage of expensive advanced CMOS technology nodes and increased utilization of digital signal processing techniques.In this paper, we recap ongoing trends and developments for ultra-low power and high-end transceiver (TRX) designs using CMOS technology nodes ranging from low-cost to highest performance.ZusammenfassungNeben der Einführung der zellularen Mobilfunknetze der fünften Generation (5G) muss sich auch die integrierte Hochfrequenz-Schaltungstechnik einer noch nie dagewesenen Breite an unterschiedlichen Anforderungen stellen:Auf der einen Seite gibt es überall kabellose Sensornetzwerke, denen nur eine geringe Menge an Versorgungsleistung im Mikrowatt-Bereich zur Verfügung steht. Daher müssen die Chips in diesem Bereich energieautark und möglichst kostengünstig entwickelt werden. Aufgrund der zu erwartenden hohen Stückzahlen (Milliarden von unterschiedlichsten Sensoren für verschiedene Anwendungen) sind eine drahtgebundene Energieversorgung oder der Einsatz von Batterien in vielen Fällen praktisch unmöglich. Somit wird es für die Sensoren immer wichtiger, ihre Energieversorgung aus der Umgebung zu gewinnen (Stichwort Energy Harvesting). Auf der anderen Seite treibt die moderne Funkkommunikation in 5G-Netzwerken mit Gigabit-pro-Sekunde-fähigen zellularen Modems die Hardware- und Leistungsverbrauchsanforderungen auf die Spitze. Zur Verbesserung hardwarebedingter Einschränkungen und Ungenauigkeiten durch analoge Realisierungen werden nun oft digitale Korrektur-, Anpassungs- und Kompensationsalgorithmen eingesetzt. Diese neuartigen Mixed-signal-Schaltungskonzepte sowie die erforderliche gesteigerte Integrationsdichte verlangen oft auch den Einsatz von teuren immer kleiner werdenden CMOS-Technologieknoten.In dieser Arbeit stellen die Autoren die aktuellen Trends und Entwicklungen in den Bereichen kostengünstiger Ultra-Low-Power- und High-End-Hochfrequenz integrierte CMOS-Schaltungen gegenüber.

[1]  Heinrich Milosiu,et al.  Sub-10 µA data reception with low latency using a 180-nm CMOS wake-up receiver at 868 MHz , 2011, 2011 Semiconductor Conference Dresden.

[2]  Hoi-Jun Yoo,et al.  A Low Energy Injection-Locked FSK Transceiver With Frequency-to-Amplitude Conversion for Body Sensor Applications , 2011, IEEE Journal of Solid-State Circuits.

[3]  Gerald Holweg,et al.  Energy harvesting with on-chip solar cells and integrated DC/DC converter , 2015, 2015 45th European Solid State Device Research Conference (ESSDERC).

[4]  K. Mayaram,et al.  Efficient Far-Field Radio Frequency Energy Harvesting for Passively Powered Sensor Networks , 2008, IEEE Journal of Solid-State Circuits.

[5]  Lukas Zoscher,et al.  A differential threshold voltage compensated RF-DC power converter for RFID tag ICs , 2017, 2017 Integrated Nonlinear Microwave and Millimetre-wave Circuits Workshop (INMMiC).

[6]  F. Horiguchi,et al.  Integration of series-connected on-chip solar battery in a triple-well CMOS LSI , 2011, 2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC).

[7]  R. van Langevelde,et al.  An ultra-low-power 868/915 MHz RF transceiver for wireless sensor network applications , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[8]  M K Law,et al.  High-Voltage Generation With Stacked Photodiodes in Standard CMOS Process , 2010, IEEE Electron Device Letters.

[9]  Thomas Faseth,et al.  A Review of Ultra-Low-Power and Low-Cost Transceiver Design , 2017, 2017 Austrochip Workshop on Microelectronics (Austrochip).

[10]  B. Razavi A study of injection locking and pulling in oscillators , 2004, IEEE Journal of Solid-State Circuits.

[11]  Chao Yu,et al.  Digital Compensation for Transmitter Leakage in Non-Contiguous Carrier Aggregation Applications With FPGA Implementation , 2015, IEEE Transactions on Microwave Theory and Techniques.

[12]  Yun Sun,et al.  Integration of Solar Cells on Top of CMOS Chips—Part II: CIGS Solar Cells , 2011, IEEE Transactions on Electron Devices.

[13]  Harald Pretl,et al.  13.2 A digital multimode polar transmitter supporting 40MHz LTE Carrier Aggregation in 28nm CMOS , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[14]  Y. Kawahara,et al.  E-WEHP: A Batteryless Embedded Sensor-Platform Wirelessly Powered From Ambient Digital-TV Signals , 2013, IEEE Transactions on Microwave Theory and Techniques.

[15]  Christofer Toumazou,et al.  A 1 V Wireless Transceiver for an Ultra-Low-Power SoC for Biotelemetry Applications , 2008, IEEE Journal of Solid-State Circuits.

[16]  Sudipto Chakraborty,et al.  An ultra-low power, low-cost, multi-standard transceiver , 2015, 2015 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS).

[17]  Manos M. Tentzeris,et al.  A Novel Ultra-Lightweight Multiband Rectenna on Paper for RF Energy Harvesting in the Next Generation LTE Bands , 2018, IEEE Transactions on Microwave Theory and Techniques.

[18]  Martin A. Green,et al.  24% efficient silicon solar cells , 1990 .

[19]  Holger Karl,et al.  A Survey of Low-Power Transceivers and Their Applications , 2015, IEEE Circuits and Systems Magazine.

[20]  E.H. Armstrong,et al.  Some Recent Developments of Regenerative Circuits , 1922, Proceedings of the Institute of Radio Engineers.

[21]  Jeremy Holleman,et al.  A low-power FSK/OOK transmitter for 915 MHz ISM band , 2015, 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[22]  Mario Huemer,et al.  A Circuit Technique for Blocker-Induced Modulated Spur Cancellation in 4G LTE Carrier Aggregation Transceivers , 2017, 2017 Austrochip Workshop on Microelectronics (Austrochip).

[23]  Mario Huemer,et al.  Nonlinear least-mean-squares type algorithm for second-order interference cancellation in LTE-A RF transceivers , 2017, 2017 51st Asilomar Conference on Signals, Systems, and Computers.

[24]  David Blaauw,et al.  7.4 A 915MHz asymmetric radio using Q-enhanced amplifier for a fully integrated 3×3×3mm3 wireless sensor node with 20m non-line-of-sight communication , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[25]  Brian P. Otis,et al.  A Sub-100 $\mu$ W MICS/ISM Band Transmitter Based on Injection-Locking and Frequency Multiplication , 2011, IEEE Journal of Solid-State Circuits.

[26]  Dae Hyun Kwon,et al.  13.3 A SAW-less reconfigurable multimode transmitter with a voltage-mode harmonic-reject mixer in 14nm FinFET CMOS , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[27]  Young-Joon Kim,et al.  An Ultra-Low-Power RF Energy-Harvesting Transceiver for Multiple-Node Sensor Application , 2015, IEEE Transactions on Circuits and Systems II: Express Briefs.

[28]  Manel Collados,et al.  7.3 A 40nm low-power transceiver for LTE-A Carrier Aggregation , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).