Nonsmooth nonlinear systems can model many practical processes with discontinuous property and are difficult to be stabilized by classical control methods like smooth nonlinear systems. This article considers the output-feedback adaptive neural network (NN) control problem for nonsmooth nonlinear systems with input deadzone and saturation. First, the nonsmooth input deadzone and saturation is converted to a smooth function of affine form with bounded estimation error by means of the mean-value theorem. Second, with the help of approximation theorem and Filippov's differential inclusion theory, the given nonsmooth system is converted to an equivalent smooth system model. Then, by introducing a proper logarithmic barrier Lyapunov function (BLF), an output-feedback adaptive NN strategy is set up by constructing an appropriate observer and adopting the adaptive backstepping technique. A new stability criterion is established to guarantee that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded (SGUUB). Finally, comparative simulations through Chua's oscillator are offered to verify the effectiveness of the proposed control algorithm.