Patterns in Discretized Parabolas and Length Estimation

We estimate the frequency of the patterns in the discretization of parabolas, when the resolution tends to zero. We deduce that local estimators of length almost never converge to the length for the parabolas.

[1]  Mohamed Tajine,et al.  About the frequencies of some patterns in digital planes. Application to area estimators , 2009, Comput. Graph..

[2]  Reinhard Klette,et al.  A comparative evaluation of length estimators , 2002, Object recognition supported by user interaction for service robots.

[3]  Harold Davenport Multiplicative number theory / Harold Davenport ; revised by Hugh L. Montgomery , 1980 .

[4]  Andrew Granville,et al.  Equidistribution in number theory, an introduction , 2006 .

[5]  W. Rudin Real and complex analysis , 1968 .

[6]  I. Vinogradov,et al.  Elements of number theory , 1954 .

[7]  M. D. McIlroy,et al.  A note on discrete representation of lines , 1985, AT&T Technical Journal.

[8]  A. Granville UNIFORM DISTRIBUTION , 2006 .

[9]  Mohamed Tajine,et al.  On Local Definitions of Length of Digital Curves , 2003, DGCI.

[10]  H. Davenport Multiplicative Number Theory , 1967 .

[11]  Mohamed Tajine Digital Segments and Hausdorff Discretization , 2008, IWCIA.

[12]  M. E. Munroe,et al.  Measure and integration , 1954 .

[13]  Mohamed Tajine,et al.  Patterns in discretized parabolas and length estimation (extended version) , 2009 .

[14]  Ward Cheney,et al.  Measure and Integration , 2001 .

[15]  Mohamed Tajine,et al.  About the Frequencies of Some Patterns in Digital Planes Application to Area Estimators , 2008, DGCI.

[16]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[17]  Reinhard Klette,et al.  A Comparative Evaluation of Length Estimators of Digital Curves , 2004, IEEE Trans. Pattern Anal. Mach. Intell..