LPV model identification for gain scheduling control : An application to rotating stall and surge control problem

We approach the problem of identifying a nonlinear plant by parameterizing its dynamics as a linear parameter varying (LPV) model. The system under consideration is the Moore–Greitzer model which captures surge and stall phenomena in compressors. The control task is formulated as a problem of output regulation at various set points (stable and unstable) of the system under inputs and states constraints. We assume that inputs, outputs and scheduling parameters are measurable. It is worth pointing out that the adopted technique allows for identification of an LPV model’s coefficients without the requirements of slow variations amongst set points. An example of combined identification, feedback control design and subsequent validation is presented. r 2005 Elsevier Ltd. All rights reserved.

[1]  R. Ravikanth,et al.  Identification of linear parametrically varying systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[2]  Bassam Bamieh,et al.  Identification for a general class of LPV Models , 2000 .

[3]  Bassam Bamieh,et al.  Identification of linear parameter varying models , 2002 .

[4]  Michael Athans,et al.  Guaranteed properties of gain scheduled control for linear parameter-varying plants , 1991, Autom..

[5]  J. H. Leet,et al.  Worst-case formulations of model predictive control for systems with bounded parameters , 1997, Autom..

[6]  A. Packard Gain scheduling via linear fractional transformations , 1994 .

[7]  L. Chisci,et al.  Gain‐scheduling MPC of nonlinear systems , 2003 .

[8]  M. Lovera,et al.  Identification of a class of linear models with nonlinearly varying parameters , 1999, 1999 European Control Conference (ECC).

[9]  Lawton H. Lee,et al.  Identification of Linear Parameter-Varying Systems Using Nonlinear Programming , 1999 .

[10]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..

[11]  Jan Tommy Gravdahl,et al.  Compressor Surge and Rotating Stall , 1999 .

[12]  Bassam Bamieh,et al.  Identification of linear parameter varying models , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[13]  M. Sznaier,et al.  An LMI approach to control oriented identification of LPV systems , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[14]  Jeff S. Shamma,et al.  Nonlinear gain-scheduled control design using set-valued methods , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[15]  Dynamics and control of entrained solutions in multi-mode Moore ± Greitzer compressor models , 1998 .

[16]  Pierre Apkarian,et al.  Self-scheduled H∞ control of linear parameter-varying systems: a design example , 1995, Autom..

[17]  B. de Jager,et al.  Rotating stall and surge control: a survey , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[18]  F. Moore,et al.  A Theory of Post-Stall Transients in Axial Compression Systems: Part I—Development of Equations , 1986 .

[19]  Dapeng Xiong,et al.  Set-valued methods for linear parameter varying systems, , 1999, Autom..

[20]  Eduardo Sontag,et al.  Changing supply functions in input/state stable systems , 1995, IEEE Trans. Autom. Control..

[21]  Manfred Morari,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[22]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[23]  R. Peña,et al.  Robust identification of linear parameter varying systems , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[24]  F. Blanchini The gain scheduling and the robust state feedback stabilization problems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).