A non-monotone smoothing Newton algorithm for solving the system of generalized absolute value equations

The system of generalized absolute value equations (GAVE) has attracted more and more attention in the optimization community. In this paper, by introducing a smoothing function, we develop a smoothing Newton algorithm with non-monotone line search to solve the GAVE. We show that the non-monotone algorithm is globally and locally quadratically convergent under a weaker assumption than those given in most existing algorithms for solving the GAVE. Numerical results are given to demonstrate the viability and efficiency of the approach. 2000 Mathematics Subject Classification. 65F10, 65H10, 90C30

[1]  R. Sznajder,et al.  Generalizations of P0- and P-properties; extended vertical and horizontal linear complementarity problems , 1995 .

[2]  Cui-Xia Li,et al.  The unique solution of the absolute value equations , 2018, Appl. Math. Lett..

[3]  Qiong Zhang,et al.  A generalized Newton method for absolute value equations associated with second order cones , 2011, J. Comput. Appl. Math..

[4]  Orizon Pereira Ferreira,et al.  On the global convergence of the inexact semi-smooth Newton method for absolute value equation , 2015, Computational Optimization and Applications.

[5]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[6]  O. Mangasarian,et al.  Absolute value equations , 2006 .

[7]  J. Rohn Systems of linear interval equations , 1989 .

[8]  Jein-Shan Chen,et al.  Neural network based on systematically generated smoothing functions for absolute value equation , 2019, Journal of Applied Mathematics and Computing.

[9]  Francesco Mezzadri,et al.  On the solution of general absolute value equations , 2020, Appl. Math. Lett..

[10]  Jein-Shan Chen,et al.  A smoothing Newton method for absolute value equation associated with second-order cone , 2017 .

[11]  Olvi L. Mangasarian,et al.  Knapsack feasibility as an absolute value equation solvable by successive linear programming , 2009, Optim. Lett..

[12]  Ting-Zhu Huang,et al.  Two CSCS-based iteration methods for solving absolute value equations , 2014, 1404.1678.

[13]  Jingyong Tang,et al.  A variant nonmonotone smoothing algorithm with improved numerical results for large-scale LWCPs , 2018 .

[14]  Jingyong Tang,et al.  A quadratically convergent descent method for the absolute value equation Ax+B|x|=b , 2019, Oper. Res. Lett..

[15]  Zheng-Hai Huang,et al.  Convergence of a smoothing algorithm for symmetric cone complementarity problems with a nonmonotone line search , 2009 .

[16]  Jingyong Tang,et al.  A Nonmonotone Smoothing Newton Algorithm for Weighted Complementarity Problem , 2021, Journal of Optimization Theory and Applications.

[17]  Defeng Sun,et al.  A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities , 2000, Math. Program..

[18]  Changfeng Ma,et al.  SOR-like iteration method for solving absolute value equations , 2017, Appl. Math. Comput..

[19]  Farhad Khaksar Haghani,et al.  On Generalized Traub’s Method for Absolute Value Equations , 2015, J. Optim. Theory Appl..

[20]  Cui-Xia Li,et al.  Weaker convergent results of the generalized Newton method for the generalized absolute value equations , 2018, J. Comput. Appl. Math..

[21]  Shi-Liang Wu,et al.  On the unique solution of the generalized absolute value equation , 2020, Optimization Letters.

[22]  Jinchuan Zhou,et al.  Quadratic convergence analysis of a nonmonotone Levenberg–Marquardt type method for the weighted nonlinear complementarity problem , 2021, Computational Optimization and Applications.

[23]  Lou Caccetta,et al.  A globally and quadratically convergent method for absolute value equations , 2011, Comput. Optim. Appl..

[24]  William W. Hager,et al.  A Nonmonotone Line Search Technique and Its Application to Unconstrained Optimization , 2004, SIAM J. Optim..

[25]  Deren Han,et al.  An inverse-free dynamical system for solving the absolute value equations , 2021 .

[26]  Cui-Xia Li,et al.  Newton-based matrix splitting method for generalized absolute value equation , 2021, J. Comput. Appl. Math..

[27]  Milan Hladík,et al.  Bounds for the solutions of absolute value equations , 2018, Comput. Optim. Appl..

[28]  Milan Hladík,et al.  A new concave minimization algorithm for the absolute value equation solution , 2021, Optimization Letters.

[29]  Amin Mansoori,et al.  A dynamic model to solve the absolute value equations , 2018, J. Comput. Appl. Math..

[30]  An Wang,et al.  Modified Newton-Type Iteration Methods for Generalized Absolute Value Equations , 2018, J. Optim. Theory Appl..

[31]  Zheng-Hai Huang,et al.  A note on absolute value equations , 2010, Optim. Lett..

[32]  Jiri Rohn,et al.  A theorem of the alternatives for the equation |Ax| − |B||x| = b , 2012, Optim. Lett..

[33]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[34]  Olvi L. Mangasarian,et al.  Absolute value equation solution via concave minimization , 2006, Optim. Lett..

[35]  M. Achache,et al.  SOLVING ABSOLUTE VALUE EQUATIONS VIA COMPLEMENTARITY AND INTERIOR-POINT METHODS , 2018 .

[36]  T. Lotfi,et al.  A note on unique solvability of the absolute value equation , 2013 .

[37]  Olvi L. Mangasarian,et al.  Absolute value programming , 2007, Comput. Optim. Appl..

[38]  Taher Lotfi,et al.  On developing a stable and quadratic convergent method for solving absolute value equation , 2018, J. Comput. Appl. Math..

[39]  Francesco Mezzadri,et al.  Modulus-based matrix splitting methods for horizontal linear complementarity problems , 2019, Numerical Algorithms.

[40]  Davod Khojasteh Salkuyeh,et al.  A generalization of the Gauss-Seidel iteration method for solving absolute value equations , 2017, Appl. Math. Comput..

[41]  Andreas Fischer,et al.  Solution of monotone complementarity problems with locally Lipschitzian functions , 1997, Math. Program..

[42]  Oleg A. Prokopyev,et al.  On equivalent reformulations for absolute value equations , 2009, Comput. Optim. Appl..

[43]  Sheng-Long Hu,et al.  Properties of a family of generalized NCP-functions and a derivative free algorithm for complementarity problems , 2009 .

[44]  Olvi L. Mangasarian,et al.  A generalized Newton method for absolute value equations , 2009, Optim. Lett..

[45]  Yifen Ke,et al.  The new iteration algorithm for absolute value equation , 2020, Appl. Math. Lett..

[46]  Y. Zhang,et al.  A SMOOTHING-TYPE ALGORITHM FOR ABSOLUTE VALUE EQUATIONS , 2013 .

[47]  Deren Han,et al.  A modified fixed point iteration method for solving the system of absolute value equations , 2020, Optimization.

[48]  S. Ketabchi,et al.  The proximal methods for solving absolute value equation , 2021, Numerical Algebra, Control & Optimization.

[49]  Chao Zhang,et al.  Global and Finite Convergence of a Generalized Newton Method for Absolute Value Equations , 2009 .

[50]  Hongwei Liu,et al.  A family of new smoothing functions and a nonmonotone smoothing Newton method for the nonlinear complementarity problems , 2011 .