A five-field augmented fully-mixed finite element method for the Navier-Stokes/Darcy coupled problem
暂无分享,去创建一个
Gabriel N. Gatica | Ricardo Oyarzúa | Nathalie Valenzuela | G. Gatica | Ricardo Oyarzúa | N. Valenzuela
[1] Ricardo Ruiz-Baier,et al. New fully-mixed finite element methods for the Stokes–Darcy coupling☆ , 2015 .
[2] Gabriel N. Gatica,et al. An Augmented Mixed Finite Element Method for the Navier-Stokes Equations with Variable Viscosity , 2016, SIAM J. Numer. Anal..
[3] Francisco-Javier Sayas,et al. Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem , 2011, Math. Comput..
[4] Salim Meddahi,et al. A Coupled Mixed Finite Element Method for the Interaction Problem between an Electromagnetic Field and an Elastic Body , 2010, SIAM J. Numer. Anal..
[5] B. Rivière,et al. On the solution of the coupled Navier–Stokes and Darcy equations , 2009 .
[6] Jinchao Xu,et al. Numerical Solution to a Mixed Navier-Stokes/Darcy Model by the Two-Grid Approach , 2009, SIAM J. Numer. Anal..
[7] Arif Masud. A stabilized mixed finite element method for Darcy–Stokes flow , 2007 .
[8] Ricardo Ruiz-Baier,et al. An augmented stress‐based mixed finite element method for the steady state Navier‐Stokes equations with nonlinear viscosity , 2017 .
[9] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[10] G. Gatica,et al. A conforming mixed finite-element method for the coupling of fluid flow with porous media flow , 2008 .
[11] Sergio Caucao,et al. A fully-mixed finite element method for the Navier–Stokes/Darcy coupled problem with nonlinear viscosity , 2017, J. Num. Math..
[12] Gabriel N. Gatica,et al. Analysis of the HDG method for the stokes–darcy coupling , 2017 .
[13] Frédéric Hecht,et al. New development in freefem++ , 2012, J. Num. Math..
[14] A. Quarteroni,et al. Navier-Stokes/Darcy Coupling: Modeling, Analysis, and Numerical Approximation , 2009 .
[15] Willi Jäger,et al. On The Interface Boundary Condition of Beavers, Joseph, and Saffman , 2000, SIAM J. Appl. Math..
[16] Ricardo Ruiz-Baier,et al. Error analysis of an augmented mixed method for the Navier–Stokes problem with mixed boundary conditions , 2018 .
[17] G. Gatica,et al. Analysis of an augmented fully-mixed approach for the coupling of quasi-Newtonian fluids and porous media , 2014 .
[18] E. Miglio,et al. Mathematical and numerical models for coupling surface and groundwater flows , 2002 .
[19] Ricardo Oyarzúa,et al. A conforming mixed finite element method for the Navier–Stokes/Darcy coupled problem , 2016, Numerische Mathematik.
[20] VIVETTE GIRAULT,et al. DG Approximation of Coupled Navier-Stokes and Darcy Equations by Beaver-Joseph-Saffman Interface Condition , 2009, SIAM J. Numer. Anal..
[21] S. Meddahi,et al. Strong coupling of finite element methods for the Stokes–Darcy problem , 2012, 1203.4717.
[22] Timothy A. Davis,et al. Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.
[23] Alfio Quarteroni,et al. Numerical analysis of the Navier–Stokes/Darcy coupling , 2010, Numerische Mathematik.
[24] J. Galvis,et al. NON-MATCHING MORTAR DISCRETIZATION ANALYSIS FOR THE COUPLING STOKES-DARCY EQUATIONS , 2007 .
[25] Francisco-Javier Sayas,et al. A twofold saddle point approach for the coupling of fluid flow with nonlinear porous media flow , 2012 .
[27] Yanren Hou,et al. Numerical analysis for the mixed Navier–Stokes and Darcy Problem with the Beavers–Joseph interface condition , 2015 .
[28] R. Hiptmair. Finite elements in computational electromagnetism , 2002, Acta Numerica.
[29] D. Joseph,et al. Boundary conditions at a naturally permeable wall , 1967, Journal of Fluid Mechanics.