Optical coherence tomography angiography

Optical coherence tomography (OCT) was one of the biggest advances in ophthalmic imaging. Building on that platform, OCT angiography (OCTA) provides depth resolved images of blood flow in the retina and choroid with levels of detail far exceeding that obtained with older forms of imaging. This new modality is challenging because of the need for new equipment and processing techniques, current limitations of imaging capability, and rapid advancements in both imaging and in our understanding of the imaging and applicable pathophysiology of the retina and choroid. These factors lead to a steep learning curve, even for those with a working understanding dye-based ocular angiography. All for a method of imaging that is a little more than 10 years old. This review begins with a historical account of the development of OCTA, and the methods used in OCTA, including signal processing, image generation, and display techniques. This forms the basis to understand what OCTA images show as well as how image artifacts arise. The anatomy and imaging of specific vascular layers of the eye are reviewed. The integration of OCTA in multimodal imaging in the evaluation of retinal vascular occlusive diseases, diabetic retinopathy, uveitis, inherited diseases, age-related macular degeneration, and disorders of the optic nerve is presented. OCTA is an exciting, disruptive technology. Its use is rapidly expanding in clinical practice as well as for research into the pathophysiology of diseases of the posterior pole.

[1]  A. Bird,et al.  FUNDUS AUTOFLUORESCENCE IMAGING: Review and Perspectives , 2008, Retina.

[2]  David Huang,et al.  Projection-resolved optical coherence tomographic angiography. , 2016, Biomedical optics express.

[3]  Scott I. Simon,et al.  Leukocyte Adhesion Dynamics in Shear Flow , 2002, Annals of Biomedical Engineering.

[4]  Matthew D. Davis,et al.  Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. , 2003, Ophthalmology.

[5]  W. Kendal,et al.  A stochastic model for the self-similar heterogeneity of regional organ blood flow. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[6]  R. Spaide PEAU D'ORANGE AND ANGIOID STREAKS: Manifestations of Bruch Membrane Pathology , 2015, Retina.

[7]  Mayss Al-Sheikh,et al.  Repeatability of automated vessel density measurements using optical coherence tomography angiography , 2016, British Journal of Ophthalmology.

[8]  Eric M. Moult,et al.  Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy. , 2015, Ophthalmology.

[9]  Giovanni Gregori,et al.  ZEISS Angioplex™ Spectral Domain Optical Coherence Tomography Angiography: Technical Aspects. , 2016, Developments in ophthalmology.

[10]  Theodore Leng,et al.  Spectral-Domain Optical Coherence Tomography Angiography of Central Retinal Artery Occlusion. , 2016, Ophthalmic surgery, lasers & imaging retina.

[11]  Martin F. Kraus,et al.  En face enhanced-depth swept-source optical coherence tomography features of chronic central serous chorioretinopathy. , 2014, Ophthalmology.

[12]  P. Heiduschka,et al.  Impact of eye-tracking technology on OCT-angiography imaging quality in age-related macular degeneration , 2017, Graefe's Archive for Clinical and Experimental Ophthalmology.

[13]  S. Hayreh Vascular pattern of the choriocapillaris. , 1974, Experimental eye research.

[14]  R W Flower,et al.  Extraction of choriocapillaris hemodynamic data from ICG fluorescence angiograms. , 1993, Investigative ophthalmology & visual science.

[15]  J. Kempen,et al.  Mycophenolate mofetil therapy for inflammatory eye disease. , 2005, Ophthalmology.

[16]  M Palta,et al.  Abnormalities of the foveal avascular zone in diabetic retinopathy. , 1984, Archives of ophthalmology.

[17]  Fluorescein angiographic risk factors for progression of diabetic retinopathy. ETDRS report number 13. Early Treatment Diabetic Retinopathy Study Research Group. , 1991, Ophthalmology.

[18]  A. Kennan,et al.  Aberrant retinal tight junction and adherens junction protein expression in an animal model of autosomal recessive Retinitis pigmentosa: The Rho(−/−) mouse , 2006 .

[19]  Maggie L. Gordon,et al.  High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts. , 2003, Optics express.

[20]  Y. Ogura,et al.  New Insights Into Microaneurysms in the Deep Capillary Plexus Detected by Optical Coherence Tomography Angiography in Diabetic Macular Edema. , 2016, Investigative ophthalmology & visual science.

[21]  M. V. Cicinelli,et al.  Vessel density analysis in patients with retinitis pigmentosa by means of optical coherence tomography angiography , 2016, British Journal of Ophthalmology.

[22]  U. Schraermeyer,et al.  Choriocapillaris breakdown precedes retinal degeneration in age-related macular degeneration , 2014, Neurobiology of Aging.

[23]  G. Schmid-Schönbein The Damaging Potential of Leukocyte Activation in the Microcirculation , 1993, Angiology.

[24]  Martin F. Kraus,et al.  Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. , 2014, Ophthalmology.

[25]  Xiaodong Sun,et al.  The Diagnostic Accuracy of Optical Coherence Tomography Angiography for Neovascular Age-Related Macular Degeneration: A Comparison with Fundus Fluorescein Angiography , 2016, Journal of ophthalmology.

[26]  David J. Wilson,et al.  Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography , 2017, Scientific Reports.

[27]  Edward Wylęgała,et al.  Optical coherence angiography , 2016, Medicine.

[28]  K. Freund,et al.  EN FACE IMAGING OF PACHYCHOROID SPECTRUM DISORDERS WITH SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY , 2016, Retina.

[29]  Shin Yoneya,et al.  Patterns of the choriocapillaris , 1983, International Ophthalmology.

[30]  Joachim Hornegger,et al.  Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis , 2014, British Journal of Ophthalmology.

[31]  Frank G. Holz,et al.  An update on the ocular phenotype in patients with pseudoxanthoma elasticum , 2013, Front. Genet..

[32]  M. Takeichi,et al.  Role of N-cadherin cell adhesion molecules in the histogenesis of neural retina , 1988, Neuron.

[33]  E. Souied,et al.  Angiographic and optical coherence tomography characteristics of recent myopic choroidal neovascularization. , 2013, American journal of ophthalmology.

[34]  Bernd Kirchhof,et al.  Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo. , 2002, The American journal of pathology.

[35]  N. Bressler,et al.  Aflibercept, Bevacizumab, or Ranibizumab for Diabetic Macular Edema: Two-Year Results from a Comparative Effectiveness Randomized Clinical Trial. , 2016, Ophthalmology.

[36]  Christophe Baudouin,et al.  Optic Disc Vascularization in Glaucoma: Value of Spectral-Domain Optical Coherence Tomography Angiography , 2016, Journal of ophthalmology.

[37]  I. Scott,et al.  Effect of Bevacizumab vs Aflibercept on Visual Acuity Among Patients With Macular Edema Due to Central Retinal Vein Occlusion: The SCORE2 Randomized Clinical Trial , 2017, JAMA.

[38]  Jason Hsu,et al.  Quantitative Optical Coherence Tomography Angiography Features and Visual Function in Eyes With Branch Retinal Vein Occlusion. , 2016, American journal of ophthalmology.

[39]  S. Srinivas,et al.  ASSESSMENT OF RETINAL BLOOD FLOW IN DIABETIC RETINOPATHY USING DOPPLER FOURIER-DOMAIN OPTICAL COHERENCE TOMOGRAPHY , 2013, Retina.

[40]  C. Curcio,et al.  Evaluation of Segmentation of the Superficial and Deep Vascular Layers of the Retina by Optical Coherence Tomography Angiography Instruments in Normal Eyes , 2017, JAMA ophthalmology.

[41]  Kevin McNamara,et al.  Shape the future of diabetes at the IDF World Diabetes Congress 2022 , 2010, Diabetes Research and Clinical Practice.

[42]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[43]  J. Sahel,et al.  The Natural History of the Progression of Atrophy Secondary to Stargardt Disease (ProgStar) Studies: Design and Baseline Characteristics: ProgStar Report No. 1. , 2016, Ophthalmology.

[44]  A. Fercher,et al.  Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm. , 2003, Optics express.

[45]  Joon-Won Kang,et al.  CORRELATION OF MICROVASCULAR STRUCTURES ON OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY WITH VISUAL ACUITY IN RETINAL VEIN OCCLUSION , 2017, Retina.

[46]  D. Howell,et al.  P‐selectin mediates reperfusion injury through neutrophil and platelet sequestration in the warm ischemic mouse liver , 1999, Hepatology.

[47]  Masahiro Fujimoto,et al.  Relationship between Functional and Structural Changes in Diabetic Vessels in Optical Coherence Tomography Angiography , 2016, Scientific Reports.

[48]  Josh Wallman,et al.  The multifunctional choroid , 2010, Progress in Retinal and Eye Research.

[49]  Vives,et al.  Distributions of avalanches in martensitic transformations. , 1994, Physical review letters.

[50]  Reza Motaghiannezam,et al.  Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography , 2012, Biomedical optics express.

[51]  James G. Fujimoto,et al.  Ultrahigh speed spectral/Fourier domain OCT imaging in ophthalmology , 2009, European Conference on Biomedical Optics.

[52]  M. Killingsworth,et al.  Early drusen formation in the normal and aging eye and their relation to age related maculopathy: a clinicopathological study , 1999, The British journal of ophthalmology.

[53]  Robert N Weinreb,et al.  Optical Coherence Tomography Angiography Vessel Density in Glaucomatous Eyes with Focal Lamina Cribrosa Defects. , 2016, Ophthalmology.

[54]  Rufino Silva,et al.  Sequential Morphological Changes in the CNV Net after Intravitreal Anti-VEGF Evaluated with OCT Angiography , 2016, Ophthalmic Research.

[55]  Hossein Ameri,et al.  Optical Coherence Tomography Angiography of Diabetic Retinopathy in Human Subjects. , 2015, Ophthalmic surgery, lasers & imaging retina.

[56]  Ingrid U Scott,et al.  A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with observation to treat vision loss associated with macular edema secondary to central retinal vein occlusion: the Standard Care vs Corticosteroid for Retinal Vein Occlusion (SCORE) study report 5. , 2009, Archives of ophthalmology.

[57]  R. Spaide Choriocapillaris Flow Features Follow a Power Law Distribution: Implications for Characterization and Mechanisms of Disease Progression. , 2016, American journal of ophthalmology.

[58]  L. Yannuzzi,et al.  Histologic localization of indocyanine green dye in aging primate and human ocular tissues with clinical angiographic correlation. , 1998, Ophthalmology.

[59]  J. Fujimoto,et al.  Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. , 2008, Optics express.

[60]  Richard F Spaide,et al.  Volume-Rendered Optical Coherence Tomography of Diabetic Retinopathy Pilot Study. , 2015, American journal of ophthalmology.

[61]  A. Cideciyan,et al.  Comparison of Short-Wavelength Reduced-Illuminance and Conventional Autofluorescence Imaging in Stargardt Macular Dystrophy , 2016, American journal of ophthalmology.

[62]  T. Wong,et al.  Choroidal neovascularization in pathological myopia , 2012, Progress in Retinal and Eye Research.

[63]  David Huang,et al.  Optical Coherence Tomography Angiography Study of Choroidal Neovascularization Early Response after Treatment. , 2016, Developments in ophthalmology.

[64]  S H Yun,et al.  Motion artifacts in optical coherence tomography with frequency-domain ranging. , 2004, Optics express.

[65]  P. Mitchell,et al.  Ten-year incidence of retinal vein occlusion in an older population: the Blue Mountains Eye Study. , 2006, Archives of ophthalmology.

[66]  T. Sano,et al.  [Diabetic retinopathy]. , 2001, Nihon rinsho. Japanese journal of clinical medicine.

[67]  Lauren N Ayton,et al.  Optical coherence tomography-defined changes preceding the development of drusen-associated atrophy in age-related macular degeneration. , 2014, Ophthalmology.

[68]  E S Gragoudas,et al.  Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. , 1996, Ophthalmology.

[69]  K. Freund,et al.  Optical coherence tomography angiography findings of choroidal neovascularization in pseudoxanthoma elasticum , 2015, International Journal of Retina and Vitreous.

[70]  R. Spaide RETINAL VASCULAR CYSTOID MACULAR EDEMA: Review and New Theory. , 2016, Retina.

[71]  Hyung Jin Kim,et al.  Vascular Endothelial Growth Factor Expression of Intercellular Adhesion Molecule 1 (ICAM-1), Vascular Cell Adhesion Molecule 1 (VCAM-1), and E-selectin through Nuclear Factor-κB Activation in Endothelial Cells* , 2001, The Journal of Biological Chemistry.

[72]  E. Bedel Relationship between , 2009 .

[73]  K. Hammersmith Mycophenolate Mofetil Therapy for Inflammatory Eye Disease , 2006 .

[74]  A. Verkman,et al.  Model of aquaporin-4 supramolecular assembly in orthogonal arrays based on heterotetrameric association of M1-M23 isoforms. , 2011, Biophysical journal.

[75]  D McLeod,et al.  Three dimensional analysis of microaneurysms in the human diabetic retina , 1999, Journal of anatomy.

[76]  D. Browning Patchy ischemic retinal whitening in acute central retinal vein occlusion. , 2002, Ophthalmology.

[77]  Christian Simader,et al.  A systematic correlation of angiography and high-resolution optical coherence tomography in diabetic macular edema. , 2009, Ophthalmology.

[78]  Gabriel Coscas,et al.  Heidelberg Spectralis Optical Coherence Tomography Angiography: Technical Aspects. , 2016, Developments in ophthalmology.

[79]  F L Ferris,et al.  Macular edema. A complication of diabetic retinopathy. , 1984, Survey of ophthalmology.

[80]  Scott W Cousins,et al.  Fundus autofluorescence imaging in age-related macular degeneration and geographic atrophy. , 2010, Advances in experimental medicine and biology.

[81]  SriniVas R Sadda,et al.  Comparison of macular choroidal thicknesses from swept source and spectral domain optical coherence tomography , 2015, British Journal of Ophthalmology.

[82]  Dao-Yi Yu,et al.  Microstructure and network organization of the microvasculature in the human macula. , 2010, Investigative ophthalmology & visual science.

[83]  Sina Farsiu,et al.  Photoreceptor layer thinning over drusen in eyes with age-related macular degeneration imaged in vivo with spectral-domain optical coherence tomography. , 2009, Ophthalmology.

[84]  Victor X D Yang,et al.  High speed, wide velocity dynamic range Doppler optical coherence tomography (Part II): Imaging in vivo cardiac dynamics of Xenopus laevis. , 2003, Optics express.

[85]  Lauren Branchini,et al.  DETECTION OF MICROVASCULAR CHANGES IN EYES OF PATIENTS WITH DIABETES BUT NOT CLINICAL DIABETIC RETINOPATHY USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY , 2015, Retina.

[86]  R. Stockley,et al.  Mechanisms of neutrophil transmigration across the vascular endothelium in COPD , 2011, Thorax.

[87]  Eric M. Moult,et al.  Visualizing the Choriocapillaris Under Drusen: Comparing 1050-nm Swept-Source Versus 840-nm Spectral-Domain Optical Coherence Tomography Angiography , 2016, Investigative ophthalmology & visual science.

[88]  K. Ohno-Matsui,et al.  Indocyanine green angiographic findings of lacquer cracks in pathologic myopia. , 1998, Japanese journal of ophthalmology.

[89]  Frank B. Hu,et al.  Globalization of Diabetes , 2011, Diabetes Care.

[90]  S. Lightman,et al.  Ischemic Retinal Vasculitis and Its Management , 2014, Journal of ophthalmology.

[91]  Robert F Mullins,et al.  Choriocapillaris vascular dropout related to density of drusen in human eyes with early age-related macular degeneration. , 2011, Investigative ophthalmology & visual science.

[92]  E. Newman A physiological measure of carbonic anhydrase in müller cells , 1994, Glia.

[93]  G. Virgili,et al.  Relationship between internal reflectivity of diabetic microaneurysms on SD-OCT and detection on OCT Angiography , 2017 .

[94]  Robert J Zawadzki,et al.  Phase-variance optical coherence tomography: a technique for noninvasive angiography. , 2014, Ophthalmology.

[95]  Ruikang K. Wang,et al.  Optic Disc Perfusion in Primary Open Angle and Normal Tension Glaucoma Eyes Using Optical Coherence Tomography-Based Microangiography , 2016, PloS one.

[96]  CORRELATION BETWEEN MICROANEURYSMS AND RETINAL THICKNESS IN DIABETIC MACULAR EDEMA , 2008, Retina.

[97]  Eric M. Moult,et al.  En Face Doppler Optical Coherence Tomography Measurement of Total Retinal Blood Flow in Diabetic Retinopathy and Diabetic Macular Edema , 2017, JAMA ophthalmology.

[98]  J. Bassingthwaighte,et al.  Power-Law Kinetics of Tracer Washout from Physiological Systems , 1998, Annals of Biomedical Engineering.

[99]  Zhongping Chen,et al.  Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. , 2000, Optics letters.

[100]  Aki Kato,et al.  ENLARGEMENT OF FOVEAL AVASCULAR ZONE IN DIABETIC EYES EVALUATED BY EN FACE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY , 2015, Retina.

[101]  K Bailey Freund,et al.  A Comparison Between Optical Coherence Tomography Angiography and Fluorescein Angiography for the Imaging of Type 1 Neovascularization. , 2016, Investigative ophthalmology & visual science.

[102]  Peter K Kaiser,et al.  Choroidal neovascularisation on optical coherence tomography angiography in punctate inner choroidopathy and multifocal choroiditis , 2016, British Journal of Ophthalmology.

[103]  K Rohrschneider,et al.  Simultaneous confocal scanning laser fluorescein and indocyanine green angiography. , 1998, American journal of ophthalmology.

[104]  Jay S Duker,et al.  Spectral-domain optical coherence tomography angiography of choroidal neovascularization. , 2015, Ophthalmology.

[105]  S. Androudi,et al.  Retinal vasculitis in rheumatic diseases: an unseen burden , 2012, Clinical Rheumatology.

[106]  Marco Lupidi,et al.  OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY VERSUS TRADITIONAL MULTIMODAL IMAGING IN ASSESSING THE ACTIVITY OF EXUDATIVE AGE-RELATED MACULAR DEGENERATION: A New Diagnostic Challenge , 2015, Retina.

[107]  Paul G. Updike,et al.  Quantitative fluorescein angiographic analysis of choroidal neovascular membranes: validation and correlation with visual function. , 2007, Investigative ophthalmology & visual science.

[108]  X. Q. Zhang,et al.  Leukocyte entry into sites of inflammation requires overlapping interactions between the L-selectin and ICAM-1 pathways. , 1999, Journal of immunology.

[109]  Chen D. Lu,et al.  Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers , 2012, Biomedical optics express.

[110]  A. A. Abu El-Asrar,et al.  Differential Diagnosis of Retinal Vasculitis , 2009, Middle East African journal of ophthalmology.

[111]  E. Souied,et al.  QUALITATIVE AND QUANTITATIVE FOLLOW-UP USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF RETINAL VEIN OCCLUSION TREATED WITH ANTI-VEGF: Optical Coherence Tomography Angiography Follow-up of Retinal Vein Occlusion , 2017, Retina.

[112]  J. Hüfner,et al.  Fragmentation of nuclei, stones and asteroids , 1986 .

[113]  D. Granger,et al.  Adhesion molecules and their role in vascular disease. , 2001, American journal of hypertension.

[114]  Johannes F de Boer,et al.  Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans. , 2012, Optics express.

[115]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[116]  Szilárd Kiss,et al.  ULTRA–WIDE-FIELD ANGIOGRAPHY IMPROVES THE DETECTION AND CLASSIFICATION OF DIABETIC RETINOPATHY , 2012, Retina.

[117]  J. Slakter,et al.  WIDE‐ANGLE INDOCYANINE GREEN ANGIOGRAPHY , 1998, Retina.

[118]  J. Weiter,et al.  Natural history of choroidal neovascularization in degenerative myopia. , 1984, Ophthalmology.

[119]  Nadia K. Waheed,et al.  Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies , 2016, Progress in Retinal and Eye Research.

[120]  C K Dorey,et al.  Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects. , 2001, Investigative ophthalmology & visual science.

[121]  Eric M. Moult,et al.  Ultrahigh-speed swept-source OCT angiography in exudative AMD. , 2014, Ophthalmic surgery, lasers & imaging retina.

[122]  D M Snodderly,et al.  Comparison of fluorescein angiography with microvascular anatomy of macaque retinas. , 1995, Experimental eye research.

[123]  Alfredo Dubra,et al.  Comparison of adaptive optics scanning light ophthalmoscopic fluorescein angiography and offset pinhole imaging. , 2014, Biomedical optics express.

[124]  I. Bhutto,et al.  Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/Bruch's membrane/choriocapillaris complex. , 2012, Molecular aspects of medicine.

[125]  Kazuaki Miyamoto,et al.  Retinal vessel tortuosity associated with central retinal vein occlusion: an optical coherence tomography study. , 2014, Investigative ophthalmology & visual science.

[126]  Andrzej W. Fryczkowski,et al.  Anatomical and functional choroidal lobuli , 2004, International Ophthalmology.

[127]  Y. M. Sin,et al.  The diapedesis of lymphocytes through postcapillary venules of rat lymph nodes. , 1967, Revue canadienne de biologie.

[128]  Kathryn L. Pepple,et al.  Retinal Pigment Epithelial Detachments in Age-Related Macular Degeneration: Classification and Therapeutic Options , 2011, Seminars in ophthalmology.

[129]  E. Lucenteforte,et al.  Anti-vascular endothelial growth factor for diabetic macular oedema: a network meta-analysis. , 2018, The Cochrane database of systematic reviews.

[130]  Tetsuhiro Tanaka A mechanistic link between renal ischemia and fibrosis , 2017, Medical Molecular Morphology.

[131]  S. Chavala,et al.  Ocular manifestations and concepts of systemic vasculitides. , 2004, Survey of ophthalmology.

[132]  E. Newman Sodium‐bicarbonate cotransport in retinal astrocytes and Müller cells of the rat , 1999, Glia.

[133]  D. Granger,et al.  Role of adhesion molecules in vascular regulation and damage , 2000, Current hypertension reports.

[134]  J. McGill,et al.  How the diabetic eye loses vision , 2007, Endocrine.

[135]  Dao-Yi Yu,et al.  Quantitative morphometry of perifoveal capillary networks in the human retina. , 2012, Investigative ophthalmology & visual science.

[136]  J. Grunwald,et al.  Changes in Choriocapillaris and Retinal Pigment Epithelium ( RPE ) in Age-Related Macular Degeneration , 1999 .

[137]  G Coscas,et al.  Indocyanine green angiographic features of pathologic myopia. , 1996, American journal of ophthalmology.

[138]  Glenn J Jaffe,et al.  Consensus Definition for Atrophy Associated with Age-Related Macular Degeneration on OCT: Classification of Atrophy Report 3. , 2017, Ophthalmology.

[139]  Ali Erginay,et al.  CAPILLARY PLEXUS ANOMALIES IN DIABETIC RETINOPATHY ON OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY , 2015, Retina.

[140]  Margaret A. Johnson,et al.  The distribution of mitochondrial activity in relation to optic nerve structure. , 2002, Archives of ophthalmology.

[141]  Sophie Kubach,et al.  Wide-field imaging of retinal vasculature using optical coherence tomography-based microangiography provided by motion tracking , 2015, Journal of biomedical optics.

[142]  Hiroshi Ishikawa,et al.  Advanced scanning methods with tracking optical coherence tomography. , 2005, Optics express.

[143]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[144]  Joachim Hornegger,et al.  AN AUTOMATIC, INTERCAPILLARY AREA-BASED ALGORITHM FOR QUANTIFYING DIABETES-RELATED CAPILLARY DROPOUT USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY , 2016, Retina.

[145]  J. Duker,et al.  Retinal Capillary Network and Foveal Avascular Zone in Eyes with Vein Occlusion and Fellow Eyes Analyzed With Optical Coherence Tomography Angiography. , 2016, Investigative ophthalmology & visual science.

[146]  Ruikang K. Wang,et al.  Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 mum wavelength. , 2007, Optics express.

[147]  E. Souied,et al.  Optical Coherence Tomography Angiography in Retinal Vein Occlusion Treated with Dexamethasone Implant: A New Test for Follow-Up Evaluation , 2016, European journal of ophthalmology.

[148]  K Bailey Freund,et al.  Do We Need a New Classification for Choroidal Neovascularization in Age-Related Macular Degeneration? , 2010, Retina.

[149]  Joseph A. Izatt,et al.  Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography , 2011, Biomedical optics express.

[150]  Reza Motaghiannezam,et al.  In vivo human choroidal vascular pattern visualization using high-speed swept-source optical coherence tomography at 1060 nm. , 2012, Investigative ophthalmology & visual science.

[151]  T. Engell,et al.  The frequency of periphlebitis retinae in multiple sclerosis , 1982, Acta neurologica Scandinavica.

[152]  T. Nagatani Phase transition and critical phenomenon in the power-law model of traffic , 1998 .

[153]  James B. Bassingthwaighte,et al.  The Fractal Nature of Myocardial Blood Flow Emerges from a Whole-Organ Model of Arterial Network , 2000, Journal of Vascular Research.

[154]  Khayyam Durrani Retinal vasculitis. , 1989, Lancet.

[155]  W. Sly,et al.  Carbonic anhydrase XIV deficiency produces a functional defect in the retinal light response , 2007, Proceedings of the National Academy of Sciences.

[156]  G. Bresnick Diabetic maculopathy. A critical review highlighting diffuse macular edema. , 1983, Ophthalmology.

[157]  Shuichi Makita,et al.  Noise-immune complex correlation for optical coherence angiography based on standard and Jones matrix optical coherence tomography. , 2016, Biomedical optics express.

[158]  G. Virgili,et al.  Diabetic Microaneurysms Internal Reflectivity on Spectral-Domain Optical Coherence Tomography and Optical Coherence Tomography Angiography Detection. , 2017, American journal of ophthalmology.

[159]  T. Morikawa,et al.  Leukocyte plugging and cortical capillary flow after subarachnoid hemorrhage , 2016, Acta Neurochirurgica.

[160]  J. Slakter,et al.  Indocyanine-green videoangiography of drusen as a possible predictive indicator of exudative maculopathy. , 1998, Ophthalmology (Rochester, Minn.).

[161]  James G. Fujimoto,et al.  Quantitative OCT angiography of optic nerve head blood flow , 2012, Biomedical optics express.

[162]  Ruikang K. Wang,et al.  In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. , 2008, Optics express.

[163]  M. Yoder,et al.  Renal endothelial dysfunction in acute kidney ischemia reperfusion injury. , 2014, Cardiovascular & Haematological Disorders - Drug Targets.

[164]  Caroline R Baumal,et al.  Optical Coherence Tomography Angiography of Retinal Artery Occlusion. , 2016, Developments in ophthalmology.

[165]  G. Ying,et al.  Risk factors for choroidal neovascularization and geographic atrophy in the complications of age-related macular degeneration prevention trial. , 2007, Ophthalmology.

[166]  K Bailey Freund,et al.  OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF TYPE 3 NEOVASCULARIZATION SECONDARY TO AGE-RELATED MACULAR DEGENERATION , 2015, Retina.

[167]  Margaret A. Johnson,et al.  Histochemical localisation of mitochondrial enzyme activity in human optic nerve and retina , 1999, The British journal of ophthalmology.

[168]  Catherine Creuzot-Garcher,et al.  Effectiveness of a Mobile Diabetic Retinopathy Screening Campaign to Encourage Diabetics to Undergo Regular Ophthalmic Follow-Up , 2014, Ophthalmic Research.

[169]  A. Ho,et al.  Therapies for macular edema associated with central retinal vein occlusion: a report by the American Academy of Ophthalmology. , 2015, Ophthalmology.

[170]  R. Weinhaus,et al.  Retinal vasculature of the fovea of the squirrel monkey, Saimiri sciureus: Three‐dimensional architecture, visual screening, and relationships to the neuronal layers , 1990, The Journal of comparative neurology.

[171]  D. S. Mcleod,et al.  Quantifying changes in RPE and choroidal vasculature in eyes with age-related macular degeneration. , 2002, Investigative ophthalmology & visual science.

[172]  U. V. von Andrian,et al.  Neutrophil-endothelial cell interactions in vivo: a chain of events characterized by distinct molecular mechanisms. , 1993, Agents and actions. Supplements.

[173]  Jun Zhang,et al.  In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography. , 2005, Optics express.

[174]  J. Copeland,et al.  Diabetes enhances leukocyte accumulation in the coronary microcirculation early in reperfusion following ischemia. , 2000, Journal of diabetes and its complications.

[175]  K. Freund,et al.  REDEFINING MULTIFOCAL CHOROIDITIS AND PANUVEITIS AND PUNCTATE INNER CHOROIDOPATHY THROUGH MULTIMODAL IMAGING , 2013, Retina.

[176]  Joseph A Izatt,et al.  In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography. , 2007, Journal of biomedical optics.

[177]  R. Spaide Optical Coherence Tomography Angiography Signs of Vascular Abnormalization With Antiangiogenic Therapy for Choroidal Neovascularization. , 2015, American journal of ophthalmology.

[178]  Zhongping Chen,et al.  Phase-resolved optical coherence tomography and optical Doppler tomography: technology and applications , 2001, Saratov Fall Meeting.

[179]  S. Sadda,et al.  Measuring the precise area of peripheral retinal non-perfusion using ultra-widefield imaging and its correlation with the ischaemic index , 2015, British Journal of Ophthalmology.

[180]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[181]  Galina Dimitrova,et al.  Quantitative Retinal Optical Coherence Tomography Angiography in Patients With Diabetes Without Diabetic Retinopathy. , 2017, Investigative ophthalmology & visual science.

[182]  E. Chihara,et al.  Discriminatory Power of Superficial Vessel Density and Prelaminar Vascular Flow Index in Eyes With Glaucoma and Ocular Hypertension and Normal Eyes. , 2017, Investigative ophthalmology & visual science.

[183]  W. Drexler,et al.  Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients. , 2007, Journal of biomedical optics.

[184]  Muka Moriyama,et al.  Long-term development of significant visual field defects in highly myopic eyes. , 2011, American journal of ophthalmology.

[185]  Richard F Spaide,et al.  Prevalence and significance of subretinal drusenoid deposits (reticular pseudodrusen) in age-related macular degeneration. , 2010, Ophthalmology.

[186]  Dao-Yi Yu,et al.  Oxygen Distribution and Consumption within the Retina in Vascularised and Avascular Retinas and in Animal Models of Retinal Disease , 2001, Progress in Retinal and Eye Research.

[187]  P. Bak,et al.  Self-organized criticality. , 1988, Physical review. A, General physics.

[188]  Ruikang K. Wang,et al.  Three dimensional optical angiography. , 2007, Optics express.

[189]  F. Holz,et al.  Clinical Application of Multicolor Imaging Technology , 2016, Ophthalmologica.

[190]  Harald Sattmann,et al.  Phase-stable swept source OCT angiography in human skin using an akinetic source. , 2016, Biomedical optics express.

[191]  J M Olver,et al.  Functional anatomy of the choroidal circulation: Methyl methacrylate casting of human choroid , 1990, Eye.

[192]  J. Shaw,et al.  Global estimates of diabetes prevalence for 2013 and projections for 2035. , 2014, Diabetes Research and Clinical Practice.

[193]  E. Souied,et al.  Optical Coherence Tomography Angiography of Type 2 Neovascularization in Age-Related Macular Degeneration. , 2016, Developments in ophthalmology.

[194]  R. Spaide CHORIOCAPILLARIS SIGNAL VOIDS IN MATERNALLY INHERITED DIABETES AND DEAFNESS AND IN PSEUDOXANTHOMA ELASTICUM , 2017, Retina.

[195]  Adrian Mariampillai,et al.  Speckle variance detection of microvasculature using swept-source optical coherence tomography. , 2008, Optics letters.

[196]  Ruikang K. Wang,et al.  Characterizing relationship between optical microangiography signals and capillary flow using microfluidic channels. , 2016, Biomedical optics express.

[197]  L. M. Aiello,et al.  Perspectives on diabetic retinopathy. , 2003, American journal of ophthalmology.

[198]  Akiyoshi Uemura,et al.  Retinal Hemodynamics Seen on Optical Coherence Tomography Angiography Before and After Treatment of Retinal Vein Occlusion. , 2016, Investigative ophthalmology & visual science.

[199]  Giuseppe Querques,et al.  MultiColor imaging in the evaluation of geographic atrophy due to age-related macular degeneration , 2014, British Journal of Ophthalmology.

[200]  S. Bloom,et al.  THE OUTER BRUCH MEMBRANE LAYER: A Previously Undescribed Spectral-Domain Optical Coherence Tomography Finding , 2011, Retina.

[201]  V. Malinovsky,et al.  An overview of the Heidelberg Retina Tomograph. , 1996, Journal of the American Optometric Association.

[202]  M. Killingsworth,et al.  Evolution of geographic atrophy of the retinal pigment epithelium , 1988, Eye.

[203]  M. Kamei,et al.  Gap in Capillary Perfusion on Optical Coherence Tomography Angiography Associated With Persistent Macular Edema in Branch Retinal Vein Occlusion. , 2017, Investigative ophthalmology & visual science.

[204]  Nagahisa Yoshimura,et al.  EVALUATION OF MACULAR ISCHEMIA IN EYES WITH BRANCH RETINAL VEIN OCCLUSION: An Optical Coherence Tomography Angiography Study , 2017, Retina.

[205]  W. Sly,et al.  Carbonic anhydrase XIV identified as the membrane CA in mouse retina: strong expression in Müller cells and the RPE. , 2005, Experimental eye research.

[206]  A. Brucker,et al.  Optical Coherence Tomography Angiography of a Central Retinal Artery Occlusion Before and After Anterior Chamber Paracentesis. , 2017, Ophthalmology.

[207]  Srinivas R Sadda,et al.  Clinical significance of B-scan averaging with SD-OCT. , 2012, Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye.

[208]  J Němčanský,et al.  [The cell phones as devices for the ocular fundus documentation]. , 2014, Ceska a slovenska oftalmologie : casopis Ceske oftalmologicke spolecnosti a Slovenske oftalmologicke spolecnosti.

[209]  Emmanouil Tsamis,et al.  New Findings in Diabetic Maculopathy and Proliferative Disease by Swept-Source Optical Coherence Tomography Angiography. , 2016, Developments in ophthalmology.

[210]  G. Bernardi,et al.  Post‐ischemic brain damage: pathophysiology and role of inflammatory mediators , 2009, The FEBS journal.

[211]  K. Ghasemi Falavarjani,et al.  Image artefacts in swept-source optical coherence tomography angiography , 2016, British Journal of Ophthalmology.

[212]  Eric M. Moult,et al.  ULTRAHIGH SPEED SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF RETINAL AND CHORIOCAPILLARIS ALTERATIONS IN DIABETIC PATIENTS WITH AND WITHOUT RETINOPATHY , 2017, Retina.

[213]  S. Tsang,et al.  Multimodal fundus imaging in Best vitelliform macular dystrophy , 2010, Graefe's Archive for Clinical and Experimental Ophthalmology.

[214]  K. Ley,et al.  Neutrophil Adhesion and Activation under Flow , 2009, Microcirculation.

[215]  K. Lukierska-Walasek,et al.  Zipf's law and phase transition , 2013, 1312.7831.

[216]  P. Carpineto,et al.  Optical coherence tomography angiography microvascular findings in macular edema due to central and branch retinal vein occlusions , 2017, Scientific Reports.

[217]  D. Archer,et al.  An electron microscopic study of the choriocapillaris and Bruch's membrane in diabetic retinopathy. , 1970, Transactions of the ophthalmological societies of the United Kingdom.

[218]  E. Souied,et al.  [Macular dystrophies]. , 2003, Journal francais d'ophtalmologie.

[219]  C. Grund,et al.  The arm-repeat protein NPRAP (neurojungin) is a constituent of the plaques of the outer limiting zone in the retina, defining a novel type of adhering junction. , 1999, Experimental cell research.

[220]  D. Vestweber,et al.  How leukocytes cross the vascular endothelium , 2015, Nature Reviews Immunology.

[221]  S. Michels,et al.  Optical Coherence Tomography Angiography of the Foveal Avascular Zone in Retinal Vein Occlusion , 2016, Ophthalmologica.

[222]  P. Campochiaro,et al.  Sustained benefits from ranibizumab for macular edema following central retinal vein occlusion: twelve-month outcomes of a phase III study. , 2011, Ophthalmology.

[223]  C Bellman,et al.  Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. , 2001, Investigative ophthalmology & visual science.

[224]  G. Staurenghi,et al.  Dark Atrophy: An Optical Coherence Tomography Angiography Study. , 2016, Ophthalmology.

[225]  Grading diabetic retinopathy from stereoscopic color fundus photographs--an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. , 1991, Ophthalmology.

[226]  Gary M. Raymond,et al.  Modeling blood flow heterogeneity , 1996, Annals of Biomedical Engineering.

[227]  G. Staurenghi,et al.  The dark atrophy with indocyanine green angiography in Stargardt disease. , 2012, Investigative ophthalmology & visual science.

[228]  Eric M. Moult,et al.  Select Features of Diabetic Retinopathy on Swept-Source Optical Coherence Tomographic Angiography Compared With Fluorescein Angiography and Normal Eyes. , 2016, JAMA ophthalmology.

[229]  David J. Wilson,et al.  Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye , 2015, Proceedings of the National Academy of Sciences.

[230]  Giovanni Staurenghi,et al.  Scanning laser ophthalmoscopy and angiography with a wide-field contact lens system. , 2005, Archives of ophthalmology.

[231]  J B Bassingthwaighte,et al.  Fractal 15O-labeled water washout from the heart. , 1995, Circulation research.

[232]  Dongseok Choi,et al.  Patients with retinal vasculitis rarely suffer from systemic vasculitis. , 2012, Seminars in arthritis and rheumatism.

[233]  R. Spaide,et al.  Fundus autofluorescence and vitelliform macular dystrophy. , 2004, Archives of ophthalmology.

[234]  R W Flower,et al.  Variability in choriocapillaris blood flow distribution. , 1995, Investigative ophthalmology & visual science.

[235]  Lelia Adelina Paunescu,et al.  Tracking optical coherence tomography. , 2004, Optics letters.

[236]  G. Bresnick,et al.  Choroidal neovascular membrane in Best's vitelliform macular dystrophy. , 1976, American journal of ophthalmology.

[237]  L. Sobrin,et al.  Anti-tumor necrosis factor-α therapy in uveitis. , 2015, Survey of ophthalmology.

[238]  David A Boas,et al.  Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux. , 2014, Biomedical optics express.

[239]  SriniVas R Sadda,et al.  ULTRA-WIDEFIELD FUNDUS IMAGING: A Review of Clinical Applications and Future Trends , 2016, Retina.

[240]  B. Francis,et al.  Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes , 2017, PloS one.

[241]  W R Green,et al.  Age-related Macular Degeneration Histopathologic Studies: The 1992 Lorenz E. Zimmerman Lecture , 1993, Ophthalmology.

[242]  J. Duker,et al.  Choriocapillaris and Choroidal Microvasculature Imaging with Ultrahigh Speed OCT Angiography , 2013, PloS one.

[243]  Dawn A Sim,et al.  The Evaluation of Diabetic Macular Ischemia Using Optical Coherence Tomography Angiography. , 2016, Investigative ophthalmology & visual science.

[244]  R. Fimmers,et al.  TREATMENT OF CHOROIDAL NEOVASCULARIZATION DUE TO ANGIOID STREAKS: A Comprehensive Review , 2013, Retina.

[245]  R. Spaide,et al.  Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. , 2015, JAMA ophthalmology.

[246]  D. Snodderly,et al.  Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis) , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[247]  T. Ishida,et al.  Inflammatory responses to ischemia, and reperfusion in skeletal muscle , 1998, Molecular and Cellular Biochemistry.

[248]  D. Birch,et al.  Insights into the Function of Rim Protein in Photoreceptors and Etiology of Stargardt's Disease from the Phenotype in abcr Knockout Mice , 1999, Cell.

[249]  D. Loukopoulos,et al.  Angioid streaks in sickle-thalassemia. , 1994, American journal of ophthalmology.

[250]  R. Linsenmeier,et al.  Metabolic dependence of photoreceptors on the choroid in the normal and detached retina. , 2000, Investigative ophthalmology & visual science.

[251]  David Huang,et al.  Automated Quantification of Capillary Nonperfusion Using Optical Coherence Tomography Angiography in Diabetic Retinopathy. , 2016, JAMA ophthalmology.

[252]  A. Cuervo,et al.  A2E, a pigment of RPE lipofuscin, is generated from the precursor, A2PE by a lysosomal enzyme activity. , 2008, Advances in experimental medicine and biology.

[253]  Stephanie Y Lu,et al.  Central Retinal Vein Occlusion: A Review of Current Evidence-based Treatment Options , 2016, Middle East African journal of ophthalmology.

[254]  Richard F Spaide,et al.  CHOROIDAL BLOOD FLOW VISUALIZATION IN HIGH MYOPIA USING A PROJECTION ARTIFACT METHOD IN OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY , 2017, Retina.

[255]  B. Anderson Ocular effects of changes in oxygen and carbon dioxide tension. , 1968, Transactions of the American Ophthalmological Society.

[256]  J. Guy,et al.  Central retinal and posterior ciliary artery occlusion after particle embolization of the external carotid artery system. , 1991, Ophthalmology.

[257]  Amani A. Fawzi,et al.  A Pilot Study of Morphometric Analysis of Choroidal Vasculature In Vivo, Using En Face Optical Coherence Tomography , 2012, PloS one.

[258]  Ruikang K. Wang,et al.  Minimizing projection artifacts for accurate presentation of choroidal neovascularization in OCT micro-angiography. , 2015, Biomedical optics express.

[259]  Club Jules Gonin,et al.  Graefe's archive for clinical and experimental ophthalmology , 1982 .

[260]  Alfredo Dubra,et al.  Assessment of perfused foveal microvascular density and identification of nonperfused capillaries in healthy and vasculopathic eyes. , 2014, Investigative ophthalmology & visual science.

[261]  Christos Haritoglou,et al.  Topography of diabetic macular oedema compared with fluorescein angiography. , 2006, Acta ophthalmologica Scandinavica.

[262]  Xincheng Yao,et al.  QUANTITATIVE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY FEATURES FOR OBJECTIVE CLASSIFICATION AND STAGING OF DIABETIC RETINOPATHY. , 2018, Retina.

[263]  Manuel Casselholmde Salles,et al.  Optical Coherence Tomography Angiography in Central Retinal Vein Occlusion: Correlation Between the Foveal Avascular Zone and Visual Acuity. , 2016, Investigative ophthalmology & visual science.

[264]  C. Clar,et al.  Treatments for macular oedema following central retinal vein occlusion: systematic review , 2014, BMJ Open.

[265]  A. Fawzi,et al.  Deep Retinal Capillary Nonperfusion Is Associated With Photoreceptor Disruption in Diabetic Macular Ischemia. , 2016, American journal of ophthalmology.

[266]  Martin F. Kraus,et al.  Split-spectrum amplitude-decorrelation angiography with optical coherence tomography , 2012, Optics express.

[267]  M. Rispoli,et al.  LONGITUDINAL OPTICAL COHERENCE TOMOGRAPHY–ANGIOGRAPHY STUDY OF TYPE 2 NAIVE CHOROIDAL NEOVASCULARIZATION EARLY RESPONSE AFTER TREATMENT , 2015, Retina.

[268]  A. Bird,et al.  Geographic atrophy: a histopathological assessment. , 2014, JAMA ophthalmology.

[269]  A. Caporossi,et al.  Detecting papillary neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography , 2018, Acta ophthalmologica.

[270]  J. Slakter,et al.  Indocyanine Green Videoangiography: Current Status , 1994, European journal of ophthalmology.

[271]  A. Bird,et al.  The dark choroid in posterior retinal dystrophies. , 1981, The British journal of ophthalmology.

[272]  V. Arshavsky,et al.  Progress in Retinal and Eye Research , 2008 .

[273]  Richard F Spaide,et al.  Fundus autofluorescence and age-related macular degeneration. , 2003, Ophthalmology.

[274]  Per Bak,et al.  The Discovery of Self-Organized Criticality , 1996 .

[275]  James G. Fujimoto,et al.  Quantitative 3D-OCT motion correction with tilt and illumination correction, robust similarity measure and regularization , 2014, Biomedical optics express.

[276]  Srinivas R Sadda,et al.  Noninvasive Visualization and Analysis of the Human Parafoveal Capillary Network Using Swept Source OCT Optical Microangiography. , 2015, Investigative ophthalmology & visual science.

[277]  R. Zawadzki,et al.  Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. , 2003, Optics express.

[278]  I. Allen,et al.  Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. , 2010, Brain : a journal of neurology.

[279]  S. Liebowitz Retinitis pigmentosa. , 1979, Journal - American Intra-Ocular Implant Society.

[280]  D. Papaconstantinou,et al.  CAPILLARY NONPERFUSION AND PHOTORECEPTOR LOSS IN BRANCH RETINAL VEIN OCCLUSION: Spatial Correlation and Morphologic Characteristics , 2017, Retina.

[281]  Teresa C. Chen,et al.  In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography , 2003 .

[282]  Mayank Bansal,et al.  Optical Coherence Tomography Angiography of Type 1 Neovascularization in Age-Related Macular Degeneration. , 2015, American journal of ophthalmology.

[283]  R. Spaide OUTER RETINAL ATROPHY AFTER REGRESSION OF SUBRETINAL DRUSENOID DEPOSITS AS A NEWLY RECOGNIZED FORM OF LATE AGE-RELATED MACULAR DEGENERATION , 2013, Retina.

[284]  I. Wallow,et al.  The eye in accelerated hypertension. I. Elschnig's spots in nonhuman primates. , 1980, Archives of ophthalmology.

[285]  M. Tso,et al.  Pathology of cystoid macular edema. , 1982, Ophthalmology.

[286]  J. Duker,et al.  Evaluation of Preretinal Neovascularization in Proliferative Diabetic Retinopathy Using Optical Coherence Tomography Angiography. , 2016, Ophthalmic surgery, lasers & imaging retina.

[287]  Szilárd Kiss,et al.  Wide-field imaging of the retina. , 2013, Survey of ophthalmology.

[288]  M. Cipolla Integrated Systems Physiology: From Molecule to Function , 2009 .

[289]  C. La Morgia,et al.  Mitochondrial dysfunction in optic neuropathies: animal models and therapeutic options. , 2013, Current opinion in neurology.

[290]  J. Duker,et al.  Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. , 2010, Optics express.

[291]  N. Miller,et al.  CHOROIDAL INFARCTION, ANTERIOR ISCHEMIC OPTIC NEUROPATHY, AND CENTRAL RETINAL ARTERY OCCLUSION FROM POLYARTERITIS NODOSA , 2001, Retina.

[292]  D. Patel,et al.  Fractalkine and CX3CR1 Mediate a Novel Mechanism of Leukocyte Capture, Firm Adhesion, and Activation under Physiologic Flow , 1998, The Journal of experimental medicine.

[293]  A E Burgess,et al.  The Rose model, revisited. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[294]  Xiulan Zhang,et al.  Microvascular Density in Glaucomatous Eyes With Hemifield Visual Field Defects: An Optical Coherence Tomography Angiography Study. , 2016, American journal of ophthalmology.

[295]  Jay S Duker,et al.  Association of Choroidal Neovascularization and Central Serous Chorioretinopathy With Optical Coherence Tomography Angiography. , 2015, JAMA ophthalmology.

[296]  R. Hector Acute posterior multifocal placoid pigment epitheliopathy. , 1978, American journal of ophthalmology.

[297]  Ditte J. Hess,et al.  A randomized clinical trial of early panretinal photocoagulation for ischemic central vein occlusion. The Central Vein Occlusion Study Group N report. , 1995, Ophthalmology.

[298]  A. Deutman Acute multifocal ischaemic choroidopathy and the choriocapillaris , 1983, International Ophthalmology.

[299]  S. Srinivas,et al.  FEASIBILITY AND CLINICAL UTILITY OF ULTRA-WIDEFIELD INDOCYANINE GREEN ANGIOGRAPHY , 2014, Retina.

[300]  Ronald Klein,et al.  The 15-year cumulative incidence of retinal vein occlusion: the Beaver Dam Eye Study. , 2008, Archives of ophthalmology.

[301]  M. Tso,et al.  Angioarchitecture of the human choroid. , 1987, Archives of ophthalmology.

[302]  B. Harney,et al.  Detection of Diabetic Retinopathy in the Community Using a Non‐mydriatic Camera , 1991, Diabetic medicine : a journal of the British Diabetic Association.

[303]  P. Sethu,et al.  In Vitro Evaluation of the Link Between Cell Activation State and Its Rheological Impact on the Microscale Flow of Neutrophil Suspensions. , 2015, Journal of biomechanical engineering.

[304]  J. Yates,et al.  Genetic linkage. , 1986, British journal of hospital medicine.

[305]  Robert J Zawadzki,et al.  Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique. , 2009, Optics express.

[306]  James G. Fujimoto,et al.  The Definition, Rationale, and Effects of Thresholding in OCT Angiography. , 2017, Ophthalmology. Retina.

[307]  Julius Pekar,et al.  High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance. , 2003, Optics express.

[308]  Austin Roorda,et al.  Real-time eye motion compensation for OCT imaging with tracking SLO , 2012, Biomedical optics express.

[309]  W. Drexler,et al.  In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid. , 2005, Optics express.

[310]  Michel Paques,et al.  NEW INSIGHT INTO THE MACULAR DEEP VASCULAR PLEXUS IMAGED BY OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY , 2015, Retina.

[311]  Ruikang K. Wang,et al.  Optic nerve head perfusion in normal eyes and eyes with glaucoma using optical coherence tomography-based microangiography. , 2016, Quantitative imaging in medicine and surgery.

[312]  Fryczkowski Aw Vascular casting and scanning electron microscopy in diabetes. , 1987 .

[313]  Naresh Kumar Yadav,et al.  Linking Retinal Microvasculature Features With Severity of Diabetic Retinopathy Using Optical Coherence Tomography Angiography. , 2016, Investigative ophthalmology & visual science.

[314]  T. Dabbs,et al.  Prevalence of angioid streaks and other ocular complications of Paget's disease of bone. , 1990, The British journal of ophthalmology.

[315]  M. V. van Gemert,et al.  Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. , 1997, Optics letters.

[316]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[317]  C J Heaven,et al.  The quality of photographs produced by the non-mydriatic fundus camera in a screening programme for diabetic retinopathy: A 1 year prospective study , 1993, Eye.

[318]  Akitoshi Yoshida,et al.  Optical Coherence Tomography Angiography in Diabetic Retinopathy: A Prospective Pilot Study. , 2015, American journal of ophthalmology.

[319]  Richard F Spaide,et al.  IMPROVING THE AGE-RELATED MACULAR DEGENERATION CONSTRUCT: A New Classification System. , 2017, Retina.

[320]  K. Sonoda,et al.  Optical Coherence Tomography Angiography for Detecting Choroidal Neovascularization Secondary to Punctate Inner Choroidopathy. , 2016, Ophthalmic surgery, lasers & imaging retina.

[321]  Armin Wolf,et al.  Combined 60° Wide-Field Choroidal Thickness Maps and High-Definition En Face Vasculature Visualization Using Swept-Source Megahertz OCT at 1050 nm. , 2015, Investigative ophthalmology & visual science.

[322]  T. Fotsis,et al.  Anti-angiogenesis in cancer therapy: Hercules and hydra. , 2013, Cancer letters.

[323]  R. Klein,et al.  The Wisconsin age-related maculopathy grading system. , 1991, Ophthalmology.

[324]  E. Newman,et al.  The Müller cell: a functional element of the retina , 1996, Trends in Neurosciences.

[325]  R. Carr,et al.  Polymorphous presentations in vitelliform macular dystrophy: subretinal neovascularisation and central choroidal atrophy. , 1978, The British journal of ophthalmology.

[326]  A. Ho,et al.  Spectrum of Retinal Vascular Diseases Associated With Paracentral Acute Middle Maculopathy. , 2015, American journal of ophthalmology.

[327]  Qienyuan Zhou,et al.  RETINAL VASCULAR PERFUSION DENSITY MAPPING USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IN NORMALS AND DIABETIC RETINOPATHY PATIENTS , 2015, Retina.

[328]  P T de Jong,et al.  An international classification and grading system for age-related maculopathy and age-related macular degeneration , 1995 .

[329]  L. Levin Current Opinion in Ophthalmology , 1992 .

[330]  Daniel M. Schwartz,et al.  In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography , 2011, Biomedical optics express.

[331]  Francesco Bandello,et al.  Optical Coherence Tomography Angiography: A Useful Tool for Diagnosis of Treatment-Naïve Quiescent Choroidal Neovascularization. , 2016, American journal of ophthalmology.

[332]  M. Newman Power laws, Pareto distributions and Zipf's law , 2005 .

[333]  G. Coscas,et al.  Best's vitelliform macular dystrophy. , 1986, Acta ophthalmologica. Supplement.

[334]  Ulrich Schraermeyer,et al.  A central role for inflammation in the pathogenesis of diabetic retinopathy , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[335]  W. Green,et al.  Angioid streaks in Ehlers-Danlos syndrome. , 1966, Archives of ophthalmology.

[336]  R. Spaide MICROVASCULAR FLOW ABNORMALITIES ASSOCIATED WITH RETINAL VASCULITIS: A Potential of Mechanism of Retinal Injury , 2017, Retina.

[337]  Ingjiang Wide field and highly sensitive angiography based on optical coherence tomography with akinetic swept source , 2016 .

[338]  J. Jonas,et al.  RETINAL VEIN OCCLUSIONS, FROM BASICS TO THE LATEST TREATMENT , 2016, Retina.

[339]  Ali Erginay,et al.  CORRELATION BETWEEN CYSTOID SPACES IN CHRONIC DIABETIC MACULAR EDEMA AND CAPILLARY NONPERFUSION DETECTED BY OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY , 2016, Retina.

[340]  Jay S Duker,et al.  The relationship between axial length and choroidal thickness in eyes with high myopia. , 2013, American journal of ophthalmology.

[341]  J. Pepose,et al.  Retinal periphlebitis and retinitis in multiple sclerosis. I. Pathologic characteristics. , 1984, Ophthalmology.

[342]  Robert J Zawadzki,et al.  Noninvasive imaging of the foveal avascular zone with high-speed, phase-variance optical coherence tomography. , 2012, Investigative ophthalmology & visual science.

[343]  S. Asrani,et al.  Local response of the primate retinal microcirculation to increased metabolic demand induced by flicker. , 1995, Investigative ophthalmology & visual science.

[344]  T. Wong,et al.  Quantitative Assessment of Early Diabetic Retinopathy Using Fractal Analysis , 2009, Diabetes Care.

[345]  David Huang,et al.  Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology. , 2016, Biomedical optics express.

[346]  Giovanni Gregori,et al.  En Face Optical Coherence Tomography Imaging for the Detection of Nascent Geographic Atrophy. , 2017, American journal of ophthalmology.

[347]  Eric M. Moult,et al.  SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY REVEALS CHORIOCAPILLARIS ALTERATIONS IN EYES WITH NASCENT GEOGRAPHIC ATROPHY AND DRUSEN-ASSOCIATED GEOGRAPHIC ATROPHY , 2016, Retina.

[348]  R. Spaide,et al.  Retinal and choroidal arterial occlusion in Wegener's granulomatosis. , 2002, American journal of ophthalmology.

[349]  J. Duker,et al.  CORRELATION OF SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY AND CLINICAL ACTIVITY IN NEOVASCULAR AGE-RELATED MACULAR DEGENERATION , 2016, Retina.

[350]  Zhao Ren,et al.  High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region. , 2008, Optics letters.

[351]  C. Curcio,et al.  SUBRETINAL DRUSENOID DEPOSITS IN NON-NEOVASCULAR AGE-RELATED MACULAR DEGENERATION: Morphology, Prevalence, Topography, and Biogenesis Model , 2013, Retina.

[352]  Lawrence A. Yannuzzi,et al.  VOLUME-RENDERED ANGIOGRAPHIC AND STRUCTURAL OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF MACULAR TELANGIECTASIA TYPE 2 , 2017, Retina.

[353]  James G. Fujimoto,et al.  Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns , 2012, Biomedical optics express.

[354]  Dao-Yi Yu,et al.  Quantitative confocal imaging of the retinal microvasculature in the human retina. , 2012, Investigative ophthalmology & visual science.

[355]  S S Hayreh,et al.  Segmental nature of the choroidal vasculature. , 1975, The British journal of ophthalmology.

[356]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[357]  V. Sheffield,et al.  Genetic linkage of vitelliform macular degeneration (Best's disease) to chromosome 11q13 , 1992, Nature Genetics.

[358]  J. Fujimoto,et al.  IMAGE ARTIFACTS IN OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY , 2015, Retina.

[359]  Richard F Spaide,et al.  Retinal vascular layers in macular telangiectasia type 2 imaged by optical coherence tomographic angiography. , 2015, JAMA ophthalmology.

[360]  R. Huber,et al.  Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. , 2011, Optics express.

[361]  Eric M. Moult,et al.  Toward quantitative OCT angiography: visualizing flow impairment using variable interscan time analysis (VISTA) , 2016 .

[362]  Srinivas R Sadda,et al.  Optical Coherence Tomography Angiography Analysis of the Foveal Avascular Zone and Macular Vessel Density After Anti-VEGF Therapy in Eyes With Diabetic Macular Edema and Retinal Vein Occlusion. , 2017, Investigative ophthalmology & visual science.

[363]  H. Lipowsky,et al.  Role of Leukocyte‐Endothelium Adhesion in Affecting Recovery from Ischemic Episodes a , 1989, Annals of the New York Academy of Sciences.

[364]  Akitoshi Yoshida,et al.  Characteristics of Retinal Neovascularization in Proliferative Diabetic Retinopathy Imaged by Optical Coherence Tomography Angiography. , 2016, Investigative ophthalmology & visual science.

[365]  Richard F Spaide,et al.  Volume-Rendered Optical Coherence Tomography of Retinal Vein Occlusion Pilot Study. , 2016, American journal of ophthalmology.

[366]  Dao-Yi Yu,et al.  Intraretinal oxygen distribution and consumption during retinal artery occlusion and graded hyperoxic ventilation in the rat. , 2007, Investigative ophthalmology & visual science.

[367]  Iwona Gorczynska,et al.  Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid. , 2016, Biomedical optics express.

[368]  David Huang,et al.  Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography. , 2013, Biomedical optics express.

[369]  Gabriel Coscas,et al.  Optical Coherence Tomography Angiography in Retinal Vein Occlusion: Evaluation of Superficial and Deep Capillary Plexa. , 2016, American journal of ophthalmology.

[370]  J. Izatt,et al.  In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. , 1997, Optics letters.

[371]  L. Ayton,et al.  Fundus autofluorescence characteristics of nascent geographic atrophy in age-related macular degeneration. , 2015, Investigative ophthalmology & visual science.

[372]  Zhang Xiao,et al.  A morphological study of the foveal avascular zone in patients with diabetes mellitus using optical coherence tomography angiography , 2016, Graefe's Archive for Clinical and Experimental Ophthalmology.

[373]  T. Tedder,et al.  Adhesion molecule cascades direct lymphocyte recirculation and leukocyte migration during inflammation , 2000, Immunologic research.

[374]  H. Novotny,et al.  A Method of Photographing Fluorescence in Circulating Blood in the Human Retina , 1961, Circulation.

[375]  D. Boas,et al.  Dynamic light scattering optical coherence tomography. , 2012, Optics express.

[376]  Sebastiaan van der Tol Wide Field Imaging , 2018 .

[377]  Chen D. Lu,et al.  Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source. , 2013, Optics letters.