Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting

[1]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[2]  William E. Frazier,et al.  Metal Additive Manufacturing: A Review , 2014, Journal of Materials Engineering and Performance.

[3]  Wei Zhang,et al.  Oxygen evolution catalysts on supports with a 3-D ordered array structure and intrinsic proton conductivity for proton exchange membrane steam electrolysis , 2014 .

[4]  Quan Quan,et al.  Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. , 2017, Chemical Society reviews.

[5]  Sophia Haussener,et al.  Mass transport aspects of electrochemical solar-hydrogen generation , 2016 .

[6]  S. Chan,et al.  Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode , 2017 .

[7]  Huaneng Su,et al.  Membrane electrode assemblies with low noble metal loadings for hydrogen production from solid polymer electrolyte water electrolysis , 2013 .

[8]  K. Sundmacher,et al.  Optimal configuration and pressure levels of electrolyzer plants in context of power-to-gas applications , 2016 .

[9]  D. Stolten,et al.  A comprehensive review on PEM water electrolysis , 2013 .

[10]  Umberto Desideri,et al.  Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations , 2013 .

[11]  Leroy Cronin,et al.  3D printed flow plates for the electrolysis of water: an economic and adaptable approach to device manufacture , 2014 .

[12]  Yuh-Shan Ho,et al.  Gas diffusion layer for proton exchange membrane fuel cells—A review , 2009 .

[13]  Todd J. Toops,et al.  Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting , 2016, Science Advances.

[14]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[15]  Fatih Köleli,et al.  Electrochemical impedance spectroscopic investigation of CO2 reduction on polyaniline in methanol , 2003 .

[16]  Jingke Mo,et al.  Effects of membrane electrode assembly properties on two-phase transport and performance in proton exchange membrane electrolyzer cells , 2016 .

[17]  Jinyue Yan,et al.  A review on compressed air energy storage: Basic principles, past milestones and recent developments , 2016 .

[18]  Claude Etievant,et al.  GenHyPEM: A research program on PEM water electrolysis supported by the European Commission , 2009 .

[19]  Yang Shao-Horn,et al.  Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis , 2015 .

[20]  D. Mahajan,et al.  Metal bipolar plates for PEM fuel cell—A review , 2007 .

[21]  A. P. Fickett,et al.  Hydrogen Generation by Solid Polymer Electrolyte Water Electrolysis , 1975 .

[22]  Sally M. Benson,et al.  Hydrogen or batteries for grid storage? A net energy analysis , 2015 .

[23]  Scott T. Retterer,et al.  Thin film surface modifications of thin/tunable liquid/gas diffusion layers for high-efficiency proton exchange membrane electrolyzer cells , 2017 .

[24]  K. Karan,et al.  Investigation of Charge-Transfer and Mass-Transport Resistances in PEMFCs with Microporous Layer Using Electrochemical Impedance Spectroscopy , 2009 .

[25]  Everett B. Anderson,et al.  Research Advances towards Low Cost, High Efficiency PEM Electrolysis , 2010, ECS Transactions.

[26]  John A. Turner,et al.  Sustainable Hydrogen Production , 2004, Science.

[27]  Dusan Strmcnik,et al.  Energy and fuels from electrochemical interfaces. , 2016, Nature materials.

[28]  Andrew Higier,et al.  Effect of gas diffusion layer compression on PEM fuel cell performance , 2006 .

[29]  Neven Duić,et al.  Sustainable development of energy, water and environment systems , 2003 .

[30]  André Sternberg,et al.  Power-to-What? : Environmental assessment of energy storage systems , 2015 .

[31]  Umberto Desideri,et al.  Integration of Solid Oxide Electrolyzer and Fischer-Tropsch: A sustainable pathway for synthetic fuel , 2016 .

[32]  Wei Li,et al.  Fast fabrication of self-supported porous nickel phosphide foam for efficient, durable oxygen evolution and overall water splitting , 2016 .

[33]  K. Friedrich,et al.  Coated Stainless Steel Bipolar Plates for Proton Exchange Membrane Electrolyzers , 2016 .

[34]  Feng-Yuan Zhang,et al.  Investigation of titanium liquid/gas diffusion layers in proton exchange membrane electrolyzer cells , 2017 .

[35]  Robert Schlögl,et al.  Electrocatalytic Oxygen Evolution Reaction in Acidic Environments – Reaction Mechanisms and Catalysts , 2017 .

[36]  A. Aricò,et al.  Enhanced performance and durability of low catalyst loading PEM water electrolyser based on a short-side chain perfluorosulfonic ionomer , 2017 .

[37]  Matthew M. Mench,et al.  Fuel Cell Engines , 2008 .

[38]  David L. Bourell,et al.  Fabrication of modified graphite bipolar plates by indirect selective laser sintering (SLS) for direct methanol fuel cells , 2010 .

[39]  N. Briguglio,et al.  Electrochemical characterization of single cell and short stack PEM electrolyzers based on a nanosized IrO2 anode electrocatalyst , 2010 .

[40]  K. Reifsnider,et al.  Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells , 2008 .

[41]  Zhiming M. Wang,et al.  Heavy metal-free, near-infrared colloidal quantum dots for efficient photoelectrochemical hydrogen generation , 2017 .

[42]  Peter Strasser,et al.  Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution , 2015, Nature Communications.

[43]  Zhiyong Tang,et al.  Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution , 2016, Nature Energy.

[44]  Christine Minke,et al.  Cost and performance prospects for composite bipolar plates in fuel cells and redox flow batteries , 2016 .

[45]  K. A. Friedrich,et al.  Low-Cost and Durable Bipolar Plates for Proton Exchange Membrane Electrolyzers , 2017, Scientific Reports.

[46]  S. Litster,et al.  A computational study to investigate the effects of the bipolar plate and gas diffusion layer interface in polymer electrolyte fuel cells , 2015 .

[47]  Todd J. Toops,et al.  Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting , 2016 .

[48]  Jingke Mo,et al.  Modeling of two-phase transport in proton exchange membrane electrolyzer cells for hydrogen energy , 2017 .

[49]  K. A. Friedrich,et al.  Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers , 2016 .

[50]  Umberto Desideri,et al.  Analysis and comparison between a concentrating solar and a photovoltaic power plant , 2014 .

[51]  Scott T. Retterer,et al.  Investigation of thin/well-tunable liquid/gas diffusion layers exhibiting superior multifunctional performance in low-temperature electrolytic water splitting , 2017 .

[52]  Yan Wang,et al.  An investigation into TiN-coated 316L stainless steel as a bipolar plate material for PEM fuel cells , 2007 .

[53]  S. Suresh Babu,et al.  Additive manufactured bipolar plate for high-efficiency hydrogen production in proton exchange membrane electrolyzer cells , 2017 .

[54]  Yasuo Hasegawa,et al.  Influence of properties of gas diffusion layers on the performance of polymer electrolyte-based unit , 2011 .

[55]  Jesse R. Hudkins,et al.  Rapid prototyping of electrolyzer flow field plates , 2016 .

[56]  S. Chou,et al.  Clean, efficient and affordable energy for a sustainable future , 2017 .