Efficient Characterization of Uncertain Model Parameters with a Reduced-Order Ensemble Kalman Filter

Spatially variable model parameters are often highly uncertain and difficult to observe. This has prompted the widespread use of Bayesian characterization methods that can infer parameter values from measurements of related variables, while explicitly accounting for uncertainty. Ensemble versions of Bayesian characterization are particularly convenient when uncertain variables have complex spatial structures that do not conform to Gaussian descriptions. However, ensemble methods can be time consuming for high-dimensional problems. This paper describes a reduced-order approach to ensemble characterization that is particularly well suited for subsurface flow and transport problems. It uses a truncated discrete cosine transform to reduce the dimensionality of spatially variable time-invariant model parameters and a nonlinear extension of principle orthogonal decomposition to reduce the dimensionality of dynamic model states. The resulting nonlinear reduced-order model can be included in the forecast step of ...

[1]  Richard E. Ewing,et al.  Mixed finite element approximation of phase velocities in compositional reservoir simulation , 1984 .

[2]  N. S. Hoang,et al.  A Low-Cost , 1997 .

[3]  C. Farhat,et al.  A low‐cost, goal‐oriented ‘compact proper orthogonal decomposition’ basis for model reduction of static systems , 2011 .

[4]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[5]  Dean S. Oliver,et al.  THE ENSEMBLE KALMAN FILTER IN RESERVOIR ENGINEERING-A REVIEW , 2009 .

[6]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[7]  Istvan Szunyogh,et al.  A Local Ensemble Kalman Filter for Atmospheric Data Assimilation , 2002 .

[8]  G. Evensen Sampling strategies and square root analysis schemes for the EnKF , 2004 .

[9]  K. Willcox,et al.  Interpolation among reduced‐order matrices to obtain parameterized models for design, optimization and probabilistic analysis , 2009 .

[10]  David Galbally,et al.  Non‐linear model reduction for uncertainty quantification in large‐scale inverse problems , 2009 .

[11]  K. Kunisch,et al.  Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition , 1999 .

[12]  Eric James Grimme,et al.  Krylov Projection Methods for Model Reduction , 1997 .

[13]  William Rodi,et al.  Simultaneous Estimation of Reflectivity and Geologic Texture: Least-Squares Migration With a Hierarchical Bayesian Model , 2013 .

[14]  Jacob K. White,et al.  A multiparameter moment-matching model-reduction approach for generating geometrically parameterized interconnect performance models , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[15]  Karen Willcox,et al.  Parametric reduced-order models for probabilistic analysis of unsteady aerodynamic applications , 2007 .

[16]  Athanasios C. Antoulas,et al.  An overview of approximation methods for large-scale dynamical systems , 2005, Annu. Rev. Control..

[17]  Clayton V. Deutsch,et al.  Geostatistical Reservoir Modeling , 2002 .

[18]  L. Cordier,et al.  Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model , 2005 .

[19]  Z. Bai Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .

[20]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[21]  Jeffrey L. Anderson,et al.  A Monte Carlo Implementation of the Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts , 1999 .

[22]  C. Zheng,et al.  Applied contaminant transport modeling , 2002 .

[23]  G. Evensen,et al.  An Ensemble Kalman Filter with a complex marine ecosystem model: hindcasting phytoplankton in the Cretan Sea , 2003 .

[24]  Geir Evensen,et al.  An Ensemble Kalman filter with a 1-D marine ecosystem model , 2002 .

[25]  George Em Karniadakis,et al.  A low-dimensional model for simulating three-dimensional cylinder flow , 2002, Journal of Fluid Mechanics.

[26]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[27]  Behnam Jafarpour,et al.  Estimating Channelized-Reservoir Permeabilities With the Ensemble Kalman Filter: The Importance of Ensemble Design , 2009 .

[28]  Dennis McLaughlin,et al.  Real-Time Ensemble Control with Reduced-Order Modeling , 2014, SIAM J. Sci. Comput..

[29]  Laurent Demanet,et al.  Time-stepping beyond CFL: a locally one-dimensional scheme for acoustic wave propagation , 2013 .

[30]  Dean S. Oliver,et al.  Critical Evaluation of the Ensemble Kalman Filter on History Matching of Geologic Facies , 2005 .

[31]  Tor Arne Johansen,et al.  Incorporating 4D Seismic Data in Reservoir Simulation Models Using Ensemble Kalman Filter , 2005 .

[32]  Istituto per le applicazioni del calcolo,et al.  Mathematical aspects of finite element methods : proceedings of the conference held in Rome, December 10-12, 1975 , 1977 .

[33]  Karen Willcox,et al.  Model Reduction for Large-Scale Systems with High-Dimensional Parametric Input Space , 2008, SIAM J. Sci. Comput..

[34]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[35]  Ibrahim Hoteit,et al.  A reduced adjoint approach to variational data assimilation , 2013 .

[36]  Geir Evensen,et al.  The ensemble Kalman filter for combined state and parameter estimation: MONTE CARLO TECHNIQUES FOR DATA ASSIMILATION IN LARGE SYSTEMS , 2009 .

[37]  Karen Willcox,et al.  Parameter and State Model Reduction for Large-Scale Statistical Inverse Problems , 2010, SIAM J. Sci. Comput..

[38]  J. Whitaker,et al.  Ensemble Data Assimilation without Perturbed Observations , 2002 .

[39]  E. Grimme,et al.  Pade approximation of large-scale dynamic systems with Lanczos methods , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[40]  Ilio Galligani,et al.  Mathematical Aspects of Finite Element Methods , 1977 .

[41]  Geir Nævdal,et al.  History Matching Using the Ensemble Kalman Filter on a North Sea Field Case , 2008 .

[42]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[43]  J. Jansen,et al.  Model-reduced gradient-based history matching , 2011 .

[44]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[45]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[46]  Akhil Datta-Gupta,et al.  A generalized grid connectivity–based parameterization for subsurface flow model calibration , 2011 .

[47]  Behnam Jafarpour Oil reservoir characterization using ensemble data assimilation , 2008 .

[48]  Peter R. Oke,et al.  A deterministic formulation of the ensemble Kalman filter : an alternative to ensemble square root filters , 2008 .

[49]  A. Stuart,et al.  Ensemble Kalman methods for inverse problems , 2012, 1209.2736.

[50]  Richard E. Ewing Finite element methods for nonlinear flows in porous media , 1985 .

[51]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[52]  Nancy Nichols,et al.  Unbiased ensemble square root filters , 2007 .

[53]  L. Sirovich TURBULENCE AND THE DYNAMICS OF COHERENT STRUCTURES PART I : COHERENT STRUCTURES , 2016 .