Effect of ferrous ions on the monophenolase activity of tyrosinase.

[1]  W. Koppenol,et al.  The hydroxylation of phenylalanine and tyrosine: a comparison with salicylate and tryptophan. , 1992, Archives of biochemistry and biophysics.

[2]  R. Varón,et al.  Calibration of a Clark-Type oxygen electrode by tyrosinase-catalyzed oxidation of 4-tert-butylcatechol. , 1992, Analytical biochemistry.

[3]  R. Varón,et al.  Analysis of a kinetic model for melanin biosynthesis pathway. , 1992, The Journal of biological chemistry.

[4]  V. Hearing,et al.  Enzymatic control of pigmentation in mammals , 1991, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[5]  R. Varón,et al.  Kinetic study on the effect of pH on the melanin biosynthesis pathway. , 1991, Biochimica et biophysica acta.

[6]  C. Leone,et al.  Agaricus bisporus metapotyrosinase: preparation, characterization, and conversion to mixed-metal derivatives of the binuclear site. , 1990, Biochemistry.

[7]  F. Solano,et al.  Regulation of mammalian melanogenesis. II: The role of metal cations. , 1990, Biochimica et biophysica acta.

[8]  M. d’Ischia,et al.  Activation of mammalian tyrosinase by ferrous ions. , 1990, Biochimica et biophysica acta.

[9]  T. Schultz,et al.  Structural modifications in biosynthetic melanins induced by metal ions. , 1988, Biochimica et biophysica acta.

[10]  M. d’Ischia,et al.  Effect of metal ions on the rearrangement of dopachrome. , 1987, Biochimica et biophysica acta.

[11]  F. García-Carmona,et al.  A kinetic study of the melanization pathway between L-tyrosine and dopachrome. , 1987, Biochimica et biophysica acta.

[12]  J. Laskin,et al.  Tyrosinase isozyme heterogeneity in differentiating B16/C3 melanoma. , 1986, The Journal of biological chemistry.

[13]  M. d’Ischia,et al.  Effect of metal ions on the kinetics of tyrosine oxidation catalysed by tyrosinase. , 1985, The Biochemical journal.

[14]  E. Solomon,et al.  Substrate analogue binding to the coupled binuclear copper active site in tyrosinase , 1985 .

[15]  B. Halliwell,et al.  Oxygen toxicity, oxygen radicals, transition metals and disease. , 1984, The Biochemical journal.

[16]  F. García-Carmona,et al.  The role of pH in the melanin biosynthesis pathway. , 1982, The Journal of biological chemistry.

[17]  E. Solomon,et al.  Chemical and spectroscopic studies of the binuclear copper active site of Neurospora tyrosinase: comparison to hemocyanins , 1980 .

[18]  K. Lerch Neurospora tyrosinase: Molecular weight, copper content and spectral properties , 1976, FEBS letters.

[19]  V. Hearing,et al.  Mammalian tyrosinase. A comparison of tyrosine hydroxylation and melanin formation. , 1976, The Biochemical journal.

[20]  S. Gutteridge,et al.  The catecholase activity of Neurospora tyrosinase. , 1975, European journal of biochemistry.

[21]  S. Pomerantz,et al.  Purification and properties of tyrosinases from Vibrio tyrosinaticus. , 1974, Archives of biochemistry and biophysics.

[22]  H. S. Mason,et al.  Reactivity of oxytyrosinase toward substrates. , 1973, The Journal of biological chemistry.

[23]  W. Pigman,et al.  Metal catalysis in the depolymerization of hyaluronic acid by autoxidants. , 1972, Journal of the American Chemical Society.

[24]  Poyer Jl,et al.  Reduced Triphosphopyridine Nucleotide Oxidase-catalyzed Alterations of Membrane Phospholipids IV. DEPENDENCE ON Fe3+ , 1971 .

[25]  S. Pomerantz The tyrosine hydroxylase activity of mammalian tyrosinase. , 1966, The Journal of biological chemistry.

[26]  H. S. Mason Structures and Functions of the Phenolase Complex , 1956, Nature.