Enforcement of interface laws for dissipative vibro-acoustic problems within high-order X-FEM

[1]  Yingjie Liu,et al.  A weighted Nitsche’s method for interface problems with higher-order simplex elements , 2022, Computational Mechanics.

[2]  Grégory Legrain,et al.  High-order X-FEM for the simulation of sound absorbing poro-elastic materials with coupling interfaces , 2021 .

[3]  A. Soulaïmani,et al.  Strongly coupled XFEM formulation for non-planar three-dimensional simulation of hydraulic fracturing with emphasis on concrete dams , 2020 .

[4]  Benedikt Schott,et al.  A Nitsche-based cut finite element method for the coupling of incompressible fluid flow with poroelasticity , 2018, Computer Methods in Applied Mechanics and Engineering.

[5]  Wilkins Aquino,et al.  Nitsche's method for Helmholtz problems with embedded interfaces , 2017, International journal for numerical methods in engineering.

[6]  Hadrien Beriot,et al.  Efficient implementation of high‐order finite elements for Helmholtz problems , 2016 .

[7]  Miguel A. Fernández,et al.  Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures , 2016 .

[8]  James A. Sethian,et al.  A three-dimensional coupled Nitsche and level set method for electrohydrodynamic potential flows in moving domains , 2016, J. Comput. Phys..

[9]  Peter Hansbo,et al.  A Nitsche-type Method for Helmholtz Equation with an Embedded Acoustically Permeable Interface , 2015, 1511.09363.

[10]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[11]  Isaac Harari,et al.  A robust Nitsche's formulation for interface problems with spline‐based finite elements , 2015 .

[12]  H. Bériot,et al.  Analysis of high‐order finite elements for convected wave propagation , 2013 .

[13]  John E. Dolbow,et al.  A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part II: Intersecting interfaces , 2013 .

[14]  E. Perrey-Debain,et al.  Performances of the Partition of Unity Finite Element Method for the analysis of two-dimensional interior sound fields with absorbing materials , 2013 .

[15]  Grégory Legrain,et al.  High order X-FEM and levelsets for complex microstructures: Uncoupling geometry and approximation , 2012 .

[16]  John E. Dolbow,et al.  A robust Nitsche’s formulation for interface problems , 2012 .

[17]  P. Hansbo,et al.  A cut finite element method for a Stokes interface problem , 2012, 1205.5684.

[18]  J. Dolbow,et al.  Robust imposition of Dirichlet boundary conditions on embedded surfaces , 2012 .

[19]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[20]  Qi-Zhi Zhu,et al.  Three‐dimensional numerical modelling by XFEM of spring‐layer imperfect curved interfaces with applications to linearly elastic composite materials , 2011 .

[21]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[22]  J. Dolbow,et al.  Imposing Dirichlet boundary conditions with Nitsche's method and spline‐based finite elements , 2010 .

[23]  Isaac Harari,et al.  An efficient finite element method for embedded interface problems , 2009 .

[24]  Nicolas Moës,et al.  Mass lumping strategies for X‐FEM explicit dynamics: Application to crack propagation , 2008 .

[25]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[26]  Ted Belytschko,et al.  A method for dynamic crack and shear band propagation with phantom nodes , 2006 .

[27]  Ted Belytschko,et al.  A comment on the article ``A finite element method for simulation of strong and weak discontinuities in solid mechanics'' by A. Hansbo and P. Hansbo [Comput. Methods Appl. Mech. Engrg. 193 (2004) 3523-3540] , 2006 .

[28]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[29]  I. Babuska,et al.  GENERALIZED FINITE ELEMENT METHODS — MAIN IDEAS, RESULTS AND PERSPECTIVE , 2004 .

[30]  Peter Hansbo,et al.  Nitsche's method for coupling non-matching meshes in fluid-structure vibration problems , 2003 .

[31]  T. Belytschko,et al.  New crack‐tip elements for XFEM and applications to cohesive cracks , 2003 .

[32]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[33]  P. Hansbo,et al.  A FINITE ELEMENT METHOD ON COMPOSITE GRIDS BASED ON NITSCHE'S METHOD , 2003 .

[34]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[35]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[36]  T. Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[37]  I. Babuska,et al.  Finite Element Solution of the Helmholtz Equation with High Wave Number Part II: The h - p Version of the FEM , 1997 .

[38]  I. Babuska,et al.  Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .

[39]  J. Stuart Bolton,et al.  A Model for Sound Absorption by and Sound Transmission Through Limp Fibrous Layers , 1995 .

[40]  Peter Bövik On the Modelling of Thin Interface Layers in Elastic and Acoustic Scattering Problems , 1994 .

[41]  Yvan Champoux,et al.  Dynamic tortuosity and bulk modulus in air‐saturated porous media , 1991 .

[42]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[43]  Joel Koplik,et al.  Theory of dynamic permeability and tortuosity in fluid-saturated porous media , 1987, Journal of Fluid Mechanics.

[44]  M. Biot Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐Frequency Range , 1956 .

[45]  D. Malkus Incompressible Finite Elements: The LBB Condition and the Discrete Eigenstructure , 1981 .