An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing.

[1]  J. Burrows,et al.  Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data , 2008 .

[2]  Robert F. Chen,et al.  Properties of the Water Column and Bottom Derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) Data , 2001 .

[3]  C. Davis,et al.  Model for the interpretation of hyperspectral remote-sensing reflectance. , 1994, Applied optics.

[4]  Xiaodong Zhang,et al.  Backscattering by very small particles in coastal waters , 2015 .

[5]  Marcel Babin,et al.  Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models , 1998 .

[6]  J. Aiken,et al.  Semianalytical model for the derivation of ocean color inherent optical properties: description, implementation, and performance assessment. , 2006, Applied optics.

[7]  M. Perry,et al.  A model for partitioning particulate absorption into phytoplanktonic and detrital components , 1994 .

[8]  T. Cui,et al.  A neural network model for remote sensing of diffuse attenuation coefficient in global oceanic and coastal waters: Exemplifying the applicability of the model to the coastal regions in Eastern China Seas , 2014 .

[9]  S. Maritorena,et al.  Merged satellite ocean color data products using a bio-optical model: Characteristics, benefits and issues , 2010 .

[10]  T. T. Bannister A general theory of steady state phytoplankton growth in a nutrient saturated mixed layer , 1974 .

[11]  Dariusz Stramski,et al.  Optical properties of Asian mineral dust suspended in seawater , 2004 .

[12]  Wei Li,et al.  Simultaneous retrieval of aerosols and ocean properties: A classic inverse modeling approach. I. Analytic Jacobians from the linearized CAO-DISORT model , 2007 .

[13]  D. Antoine,et al.  Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function. , 2002, Applied optics.

[14]  T. Harmel Recent developments in the use of light polarization for marine environment monitoring from space , 2016 .

[15]  D. Stramski,et al.  Variability of particulate organic carbon concentration in the north polar Atlantic based on ocean color observations with Sea-viewing Wide Field-of-view Sensor (SeaWiFS) , 2005 .

[16]  Richard L. Miller,et al.  Determining CDOM Absorption Spectra in Diverse Coastal Environments Using a Multiple Pathlength, Liquid Core Waveguide System By , 2005 .

[17]  E. Boss,et al.  Relationship of light scattering at an angle in the backward direction to the backscattering coefficient. , 2001, Applied optics.

[18]  Xiao‐Hai Yan,et al.  Tracking of a Chesapeake Bay estuarine outflow plume with satellite-based ocean color data , 2005 .

[19]  A. Weidemann,et al.  Variations in phytoplankton pigments, size structure and community composition related to wind forcing and water mass properties on the North Carolina inner shelf , 2003 .

[20]  J. Cullen,et al.  A semi-analytical model of the influence of phytoplankton community structure on the relationship between light attenuation and ocean color , 1999 .

[21]  M. Tzortziou,et al.  Photobleaching of Dissolved Organic Material from a Tidal Marsh‐Estuarine System of the Chesapeake Bay † , 2007, Photochemistry and photobiology.

[22]  E. O’Loughlin,et al.  Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. , 1994, Environmental science & technology.

[23]  D. Stramski,et al.  A model for partitioning the light absorption coefficient of suspended marine particles into phytoplankton and nonalgal components , 2013 .

[24]  Gustavo Camps-Valls,et al.  Composite kernels for hyperspectral image classification , 2006, IEEE Geoscience and Remote Sensing Letters.

[25]  Raymond S. Farinato,et al.  New values of the light scattering depolarization and anisotropy of water , 1976 .

[26]  L. Prieur,et al.  Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains1 , 1981 .

[27]  D. Siegel,et al.  Chapter 11 – Chromophoric DOM in the Open Ocean , 2002 .

[28]  H. Gordon,et al.  Irradiance inversion algorithm for absorption and backscattering profiles in natural waters: improvement for clear waters. , 2002, Applied optics.

[29]  S. Bernard,et al.  Sensitivity in reflectance attributed to phytoplankton cell size: forward and inverse modelling approaches. , 2014, Optics express.

[30]  H. Gordon,et al.  Simple calculation of the diffuse reflectance of the ocean. , 1973, Applied optics.

[31]  Stelvio Tassan,et al.  Variability of light absorption by aquatic particles in the near-infrared spectral region. , 2003, Applied optics.

[32]  M. Matthews,et al.  An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters , 2012 .

[33]  Lisa R. Moore,et al.  Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples , 2000 .

[34]  J. Stoń-Egiert,et al.  Quantitative analysis of extracted phycobilin pigments in cyanobacteria—an assessment of spectrophotometric and spectrofluorometric methods , 2014, Journal of Applied Phycology.

[35]  Zbigniew S. Kolber,et al.  Variations in Chlorophyll Fluorescence Yields in Phytoplankton in the World Oceans , 1995 .

[36]  Michael S. Twardowski,et al.  Closure and uncertainty assessment for ocean color reflectance using measured volume scattering functions and reflective tube absorption coefficients with novel correction for scattering , 2017 .

[37]  Annick Bricaud,et al.  Retrievals of a size parameter for phytoplankton and spectral light absorption by colored detrital matter from water‐leaving radiances at SeaWiFS channels in a continental shelf region off Brazil , 2006 .

[38]  Q. Song,et al.  A bio-optical inversion model to retrieve absorption contributions and phytoplankton size structure from total minus water spectral absorption using genetic algorithm , 2013, Chinese Journal of Oceanology and Limnology.

[39]  Wei Li,et al.  Simultaneous retrieval of aerosol and ocean properties by optimal estimation: SeaWiFS case studies for the Santa Barbara Channel , 2008 .

[40]  Xiulin Lou,et al.  Diurnal changes of a harmful algal bloom in the East China Sea: Observations from GOCI , 2014 .

[41]  John Marra,et al.  Phytoplankton pigment absorption: A strong predictor of primary productivity in the surface ocean , 2007 .

[42]  B Gentili,et al.  Diffuse reflectance of oceanic waters. II Bidirectional aspects. , 1993, Applied optics.

[43]  T. Dickey,et al.  Partitioning in situ total spectral absorption by use of moored spectral absorption-attenuation meters. , 1999, Applied optics.

[44]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .

[45]  Bryan A. Franz,et al.  Atmospheric Correction for Satellite Ocean Color Radiometry , 2016 .

[46]  S. Hooker,et al.  Algorithm development and validation for satellite‐derived distributions of DOC and CDOM in the U.S. Middle Atlantic Bight , 2008 .

[47]  Wilford D. Gardner,et al.  Global POC concentrations from in-situ and satellite data , 2006 .

[48]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[49]  Jong-Kuk Choi,et al.  Quantitative estimation of suspended sediment movements in coastal region using GOCI , 2013 .

[50]  Trevor Platt,et al.  The spectral irradiance field at the surface and in the interior of the ocean: A model for applications in oceanography and remote sensing , 1988 .

[51]  Malik Chami,et al.  Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles , 2006 .

[52]  Robert A Arnone,et al.  Uniqueness in remote sensing of the inherent optical properties of ocean water. , 2004, Applied optics.

[53]  R. Chomko Atmospheric correction of ocean color imagery: Use of Junge power-law size distribution , 1999 .

[54]  B. G. Mitchell,et al.  Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique , 1990, Defense, Security, and Sensing.

[55]  Cédric G. Fichot,et al.  A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters , 2011 .

[56]  Trevor Platt,et al.  A three component classification of phytoplankton absorption spectra: Application to ocean-color data , 2011 .

[57]  David A. Siegel,et al.  Variability in optical particle backscattering in contrasting bio‐optical oceanic regimes , 2011 .

[58]  Rasmus Fensholt,et al.  Remote Sensing , 2008, Encyclopedia of GIS.

[59]  K. Ruddick,et al.  Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8 , 2015 .

[60]  D. Siegel,et al.  Seasonal dynamics of colored dissolved material in the Sargasso Sea , 1998 .

[61]  J. Ronald V. Zaneveld,et al.  An asymptotic closure theory for irradiance in the sea and its inversion to obtain the inherent optical properties , 1989 .

[62]  Jon Brodie,et al.  Water Quality and River Plume Monitoring in the Great Barrier Reef: An Overview of Methods Based on Ocean Colour Satellite Data , 2015, Remote. Sens..

[63]  C. Mobley Polarized reflectance and transmittance properties of windblown sea surfaces. , 2015, Applied optics.

[64]  P. J. Werdell,et al.  A multi-sensor approach for the on-orbit validation of ocean color satellite data products , 2006 .

[65]  John J. Cullen,et al.  Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient , 2002 .

[66]  Zhongping Lee,et al.  An algorithm to retrieve absorption coefficient of chromophoric dissolved organic matter from ocean color , 2013 .

[67]  A compilation of global bio-optical in situ data for ocean-colour satellite applications , 2016 .

[68]  Assessment of uncertainties of ocean color parameters for the ocean Carbon-based Productivity Model , 2014 .

[69]  A. Vodacek,et al.  Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements. , 1995, Applied optics.

[70]  C. Willmott,et al.  Climate and Other Models May Be More Accurate Than Reported , 2017 .

[71]  M. He,et al.  Modeling the effects of near-surface plumes of suspended particulate matter on remote-sensing reflectance of coastal waters. , 2013, Applied optics.

[72]  Watson W. Gregg,et al.  Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model , 2015 .

[73]  C. Mobley,et al.  Phase function effects on oceanic light fields. , 2002, Applied optics.

[74]  Dariusz Stramski,et al.  Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe , 2003 .

[75]  Michael Twardowski,et al.  Retrieving composition and sizes of oceanic particle subpopulations from the volume scattering function. , 2011, Applied optics.

[76]  D. Stramski,et al.  Optical backscattering by particles in Arctic seawater and relationships to particle mass concentration, size distribution, and bulk composition , 2016 .

[77]  B. Franz,et al.  Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS-Aqua , 2009 .

[78]  S. Richter,et al.  Biogeo-optics: particle optical properties and the partitioning of the spectral scattering coefficient of ocean waters. , 2008, Applied optics.

[79]  Habtom W. Ressom,et al.  Inversion of ocean color observations using particle swarm optimization , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[80]  A. Bricaud,et al.  Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: A comparison between the Peru upwelling areaand the Sargasso Sea , 1990 .

[81]  F. Cao,et al.  Improved Algorithms for Accurate Retrieval of UV - Visible Diffuse Attenuation Coefficients in Optically Complex, Inshore Waters , 2014 .

[82]  Robert A. Maffione,et al.  Recent measurements of the spectral backward-scattering coefficient in coastal waters , 1997, Other Conferences.

[83]  Sarah A. Green,et al.  Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters , 1994 .

[84]  D. Stramski,et al.  Bio‐optical relationships and ocean color algorithms for the north polar region of the Atlantic , 2003 .

[85]  L. McKinna Three decades of ocean-color remote-sensing Trichodesmium spp. in the World’s oceans: A review , 2015 .

[86]  E. Boss,et al.  Underway Sampling of Marine Inherent Optical Properties on the Tara Oceans Expedition as a Novel Resource for Ocean Color Satellite Data Product Validation , 2013 .

[87]  Bruno Pelletier,et al.  Bayesian methodology for inverting satellite ocean-color data , 2015 .

[88]  Z. Su,et al.  Technical Note: Calibration and validation of geophysical observation models , 2012 .

[89]  D. Siegel,et al.  Spatial and temporal distribution of Trichodesmium blooms in the world's oceans , 2006 .

[90]  Stéphane Maritorena,et al.  Optimization of a semianalytical ocean color model for global-scale applications. , 2002, Applied optics.

[91]  Aleksandra Wolanin,et al.  Investigation of Spectral Band Requirements for Improving Retrievals of Phytoplankton Functional Types , 2016, Remote. Sens..

[92]  Maria Tzortziou,et al.  Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure , 2006 .

[93]  B. Mitchell,et al.  Bio-optical properties of Antarctic Peninsula waters: differentiation from temperate ocean models , 1991 .

[94]  R. Preisendorfer,et al.  Principal Component Analysis in Meteorology and Oceanography , 1988 .

[95]  A. Morel Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters) , 1988 .

[96]  Peter Fearns,et al.  Improving the optimization solution for a semi‐analytical shallow water inversion model in the presence of spectrally correlated noise , 2014 .

[97]  ZhongPing Lee,et al.  Effects of molecular and particle scatterings on the model parameter for remote-sensing reflectance. , 2004, Applied optics.

[98]  Claudia Giardino,et al.  Water Optics and Water Colour Remote Sensing , 2017, Remote. Sens..

[99]  K. Baker,et al.  Optical properties of the clearest natural waters (200-800 nm). , 1981, Applied optics.

[100]  F. Mélin,et al.  Assessment of Satellite Ocean Colour Radiometry and Derived Geophysical Products , 2014 .

[101]  R. Arnone,et al.  Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing , 2013 .

[102]  M. Defoin-Platel,et al.  How ambiguous is the inverse problem of ocean color in coastal waters , 2007 .

[103]  W Scott Pegau,et al.  Spectral backscattering properties of marine phytoplankton cultures. , 2010, Optics express.

[104]  E. Fry,et al.  Ultraviolet (250-550  nm) absorption spectrum of pure water. , 2016, Applied optics.

[105]  H. Gordon,et al.  Remote sensing optical properties of a stratified ocean: an improved interpretation. , 1980, Applied optics.

[106]  Annick Bricaud,et al.  Spatial‐temporal variations in phytoplankton size and colored detrital matter absorption at global and regional scales, as derived from twelve years of SeaWiFS data (1998–2009) , 2012 .

[107]  K. Stamnes,et al.  Accurate and self-consistent ocean color algorithm: simultaneous retrieval of aerosol optical properties and chlorophyll concentrations. , 2003, Applied optics.

[108]  M. Lewis,et al.  A New Method for the Measurement of the Optical Volume Scattering Function in the Upper Ocean , 2003 .

[109]  Rüdiger Röttgers,et al.  Assessing uncertainties in scattering correction algorithms for reflective tube absorption measurements made with a WET Labs ac-9. , 2017, Optics express.

[110]  Jens Redemann,et al.  Sensitivity of Multiangle, Multispectral Polarimetric Remote Sensing Over Open Oceans to Water-Leaving Radiance: Analyses of RSP Data Acquired During the MILAGRO Campaign , 2012 .

[111]  William M. Balch,et al.  Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy , 2004 .

[112]  Janet W. Campbell,et al.  The lognormal distribution as a model for bio‐optical variability in the sea , 1995 .

[113]  R. Doerffer,et al.  The MERIS Case 2 water algorithm , 2007 .

[114]  Vittorio E Brando,et al.  Adaptive semianalytical inversion of ocean color radiometry in optically complex waters. , 2012, Applied optics.

[115]  Jan G. P. W. Clevers,et al.  Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties - A review , 2015 .

[116]  Michael S Twardowski,et al.  Angular shape of the oceanic particulate volume scattering function in the backward direction. , 2009, Applied optics.

[117]  Andrew H. Barnard,et al.  A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters , 2001 .

[118]  Els Knaeps,et al.  Improved correction methods for field measurements of particulate light backscattering in turbid waters. , 2016, Optics express.

[119]  E. Boss,et al.  Calibrated near-forward volume scattering function obtained from the LISST particle sizer. , 2006, Optics express.

[120]  Thomas M. Smith,et al.  An Improved In Situ and Satellite SST Analysis for Climate , 2002 .

[121]  Cédric Jamet,et al.  Retrieval of the spectral diffuse attenuation coefficient Kd(λ) in open and coastal ocean waters using a neural network inversion , 2012 .

[122]  Annick Bricaud,et al.  Inversion of spectral absorption coefficients to infer phytoplankton size classes, chlorophyll concentration, and detrital matter. , 2015, Applied optics.

[123]  Frank E. Hoge,et al.  An analysis of model and radiance measurement errors , 1996 .

[124]  Jeremy Werdell,et al.  Determining the optimal spectral sampling frequency and uncertainty thresholds for hyperspectral remote sensing of ocean color. , 2017, Optics express.

[125]  R. Röttgers,et al.  Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region. , 2014, Optics express.

[126]  W. Philpot Radiative transfer in stratified waters: a single-scattering approximation for irradiance. , 1987, Applied optics.

[127]  T. Platt,et al.  Remote sensing of phytoplankton pigments: A comparison of empirical and theoretical approaches , 2001 .

[128]  Chuanmin Hu,et al.  Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements , 2014 .

[129]  T. Moore,et al.  An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters. , 2014, Remote sensing of environment.

[130]  Giuseppe Zibordi,et al.  Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea. , 2007, Applied optics.

[131]  R. Smith,et al.  Remote Senslng and Depth Distribution of Ocean Chlorophyll , 1981 .

[132]  André Morel,et al.  Light scattering and chlorophyll concentration in case 1 waters: A reexamination , 1998 .

[133]  Trevor Platt,et al.  Remote sensing of ocean colour: Towards algorithms for retrieval of pigment composition , 2005 .

[134]  M. Estapa,et al.  Photooxidation of particulate organic matter, carbon/oxygen stoichiometry, and related photoreactions , 2010 .

[135]  P Jeremy Werdell,et al.  Generalized ocean color inversion model for retrieving marine inherent optical properties. , 2013, Applied optics.

[136]  H. Gordon,et al.  Remote sensing of ocean color and aerosol properties: resolving the issue of aerosol absorption. , 1997, Applied optics.

[137]  E. Boss,et al.  Retrieving marine inherent optical properties from satellites using temperature and salinity-dependent backscattering by seawater. , 2013, Optics express.

[138]  Roland Doerffer,et al.  Determination of the particulate absorption of microalgae using a point‐source integrating‐cavity absorption meter: verification with a photometric technique, improvements for pigment bleaching, and correction for chlorophyll fluorescence , 2007 .

[139]  G. Dall’Olmo,et al.  Particle backscattering as a function of chlorophyll and phytoplankton size structure in the open-ocean. , 2012, Optics express.

[140]  M. Perry,et al.  Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters , 1989 .

[141]  Chris Roelfsema,et al.  A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data , 2009 .

[142]  E. Boss,et al.  Modeling the spectral shape of absorption by chromophoric dissolved organic matter , 2004 .

[143]  David Dessailly,et al.  Optical classification of contrasted coastal waters , 2012 .

[144]  Deric J Gray,et al.  Comparison of optically derived particle size distributions: scattering over the full angular range versus diffraction at near forward angles. , 2012, Applied optics.

[145]  Dariusz Stramski,et al.  The role of seawater constituents in light backscattering in the ocean , 2004 .

[146]  Chih-Hua Chang,et al.  Development of ocean color algorithms for estimating chlorophyll-a concentrations and inherent optical properties using gene expression programming (GEP). , 2015, Optics express.

[147]  I. Ioannou,et al.  Deriving ocean color products using neural networks , 2013 .

[148]  Richard L. Miller,et al.  Determining Cdom Absorption Spectra in Diverse Aquatic Environments Using a Multiple Pathlength, Liquid Core Waveguide System , 2013 .

[149]  J R Zaneveld,et al.  Remotely sensed reflectance and its dependence on vertical structure: a theoretical derivation. , 1982, Applied optics.

[150]  Menghua Wang,et al.  Remote Sensing of Inherent Optical Properties : Fundamentals , 2009 .

[151]  Michael S. Twardowski,et al.  Microscale Quantification of the Absorption by Dissolved and Particulate Material in Coastal Waters with an ac-9 , 1999 .

[152]  M. Kerker,et al.  Light Scattering by Pure Water , 1965 .

[153]  S. Gorshkov,et al.  World ocean atlas , 1976 .

[154]  D. Siegel,et al.  Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea , 1997 .

[155]  Mark Gall,et al.  A method for estimating inherent optical properties of New Zealand continental shelf waters from satellite ocean colour measurements , 2006 .

[156]  Helmut Schiller,et al.  Some neural network applications in environmental sciences. Part I: forward and inverse problems in geophysical remote measurements , 2003, Neural Networks.

[157]  E. Boss,et al.  Influence of Raman scattering on ocean color inversion models. , 2013, Applied optics.

[158]  François Steinmetz,et al.  Atmospheric correction in presence of sun glint: application to MERIS. , 2011, Optics express.

[159]  Astrid Bracher,et al.  Phytoplankton functional types from Space. , 2014 .

[160]  Emmanuel Boss,et al.  Chapter 8 Over Constrained Linear Matrix Inversion with Statistical Selection , 2006 .

[161]  R. Pasterkamp,et al.  HYDROPT: A fast and flexible method to retrieve chlorophyll-a from multispectral satellite observations of optically complex coastal waters , 2008 .

[162]  Stelvio Tassan,et al.  An alternative approach to absorption measurements of aquatic particles retained on filters , 1995 .

[163]  Dariusz Stramski,et al.  Variations in the mass‐specific absorption coefficient of mineral particles suspended in water , 2004 .

[164]  D. Stramski,et al.  Contrasting inherent optical properties and particle characteristics between an under-ice phytoplankton bloom and open water in the Chukchi Sea , 2014 .

[165]  Shaohui Huang,et al.  Impact of computational methods and spectral models on the retrieval of optical properties via spectral optimization. , 2013, Optics express.

[166]  Annick Bricaud,et al.  Multivariate approach for the retrieval of phytoplankton size structure from measured light absorption spectra in the Mediterranean Sea (BOUSSOLE site). , 2013, Applied optics.

[167]  J. André Ocean color remote-sensing and the subsurface vertical structure of phytoplankton pigments , 1992 .

[168]  David Dessailly,et al.  CDOM-DOC relationship in contrasted coastal waters: implication for DOC retrieval from ocean color remote sensing observation. , 2015, Optics express.

[169]  Peng Wang,et al.  Uncertainties of inherent optical properties obtained from semianalytical inversions of ocean color. , 2005, Applied optics.

[170]  A. Irwin,et al.  Light absorption by phytoplankton and the filter amplification correction: cell size and species effects. , 2001, Journal of experimental marine biology and ecology.

[171]  Stuart R. Phinn,et al.  Efficient radiative transfer model inversion for remote sensing applications , 2009 .

[172]  W. Gregg,et al.  Global and regional evaluation of the SeaWiFS chlorophyll data set , 2004 .

[173]  Walker O. Smith,et al.  An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe , 2010 .

[174]  Simon Yueh,et al.  The Aquarius/SAC-D mission: Designed to meet the salinity remote-sensing challenge , 2008 .

[175]  Kevin Ruddick,et al.  Acolite for Sentinel-2: Aquatic Applications of MSI Imagery , 2016 .

[176]  J. Kindle,et al.  Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment , 2009 .

[177]  C. Davis,et al.  An empirical algorithm for light absorption by ocean water based on color , 1998 .

[178]  S. Thiria,et al.  Retrieval of pigment concentrations and size structure of algal populations from their absorption spectra using multilayered perceptrons. , 2007, Applied optics.

[179]  Richard P. Stumpf,et al.  Comparing MODIS and MERIS spectral shapes for cyanobacterial bloom detection , 2013 .

[180]  J. Schwarz,et al.  Optical closure in marine waters from in situ inherent optical property measurements. , 2016, Optics express.

[181]  George W. Kattawar,et al.  Stokes vector calculations of the submarine light field in an atmosphere‐ocean with scattering according to a Rayleigh phase matrix: Effect of interface refractive index on radiance and polarization , 1989 .

[182]  T. Cui,et al.  Remote sensing of absorption and scattering coefficient using neural network model: Development, validation, and application , 2014 .

[183]  Tomohiko Oishi,et al.  Significant relationship between the backward scattering coefficient of sea water and the scatterance at 120 degrees. , 1990, Applied optics.

[184]  R. Evans,et al.  Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database , 2001 .

[185]  Jaume Piera,et al.  Cluster analysis of hyperspectral optical data for discriminating phytoplankton pigment assemblages in the open ocean , 2011 .

[186]  Jim Aiken,et al.  An absorption model to determine phytoplankton size classes from satellite ocean colour , 2008 .

[187]  Dariusz Stramski,et al.  Correction of pathlength amplification in the filter-pad technique for measurements of particulate absorption coefficient in the visible spectral region. , 2015, Applied optics.

[188]  S. Maritorena,et al.  Consistent merging of satellite ocean color data sets using a bio-optical model , 2005 .

[189]  D. Stramski,et al.  Particle optical backscattering along a chlorophyll gradient in the upper layer of the eastern South Pacific Ocean , 2007 .

[190]  Lianbo Hu,et al.  Scattering by pure seawater at high salinity. , 2009, Optics express.

[191]  G. T. Boalch,et al.  Ultra-violet Absorption of Sea Water , 1961, Nature.

[192]  David A. Siegel,et al.  Global assessment of ocean carbon export by combining satellite observations and food‐web models , 2014 .

[193]  Frank E. Hoge,et al.  Inherent optical properties of the ocean: Retrieval of the absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements , 1993 .

[194]  S. Twomey Introduction to the Mathematics of Inversion in Remote Sensing and Indirect Measurements , 1997 .

[195]  E. Cabello Determination of phytoplankton absorption coefficient in natural seawater samples : evidence of a unique equation to correct the pathlength amplification on glass-fiber filters , 2006 .

[196]  Ping Yang,et al.  Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. I. Monte Carlo method. , 2008, Applied optics.

[197]  G. Vargo,et al.  Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: Documenting the intrusion of the Mississippi River plume in the West Florida Shelf , 2001 .

[198]  Malik Chami,et al.  Investigation of the variations in the water leaving polarized reflectance from the POLDER satellite data over two biogeochemical contrasted oceanic areas. , 2008, Optics express.

[199]  E. Boss,et al.  Simplified model of spectral absorption by non-algal particles and dissolved organic materials in aquatic environments. , 2017, Optics express.

[200]  H. Gordon,et al.  Sensitivity of radiative transfer to small-angle scattering in the ocean: Quantitative assessment. , 1993, Applied optics.

[201]  Ziauddin Ahmad,et al.  Revisiting short-wave-infrared (SWIR) bands for atmospheric correction in coastal waters. , 2017, Optics express.

[202]  L. Prieur,et al.  A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters , 1989 .

[203]  Kerry Emanuel,et al.  How ocean color can steer Pacific tropical cyclones , 2010 .

[204]  T Platt,et al.  Effect of the particle-size distribution on the backscattering ratio in seawater. , 1994, Applied optics.

[205]  C. Hostetler,et al.  Spatial scales of optical variability in the coastal ocean: Implications for remote sensing and in situ sampling , 2016 .

[206]  Kevin Ruddick,et al.  Diurnal variability of turbidity and light attenuation in the southern North Sea from the SEVIRI geostationary sensor , 2012 .

[207]  Quinten Vanhellemont,et al.  Synergy between polar-orbiting and geostationary sensors: Remote sensing of the ocean at high spatial and high temporal resolution☆ , 2014 .

[208]  Ping Shi,et al.  Retrieval of water optical properties for optically deep waters using genetic algorithms , 2003, IEEE Trans. Geosci. Remote. Sens..

[209]  Scott A. Freeman,et al.  The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations , 2012 .

[210]  Richard W. Gould,et al.  Combining satellite ocean color and hydrodynamic model uncertainties in bio-optical forecasts , 2014 .

[211]  H. Loisel,et al.  Apparent optical properties of oceanic water: dependence on the molecular scattering contribution. , 1998, Applied optics.

[212]  Robert Frouin,et al.  Seasonal and inter‐annual variability of particulate organic matter in the global ocean , 2002 .

[213]  S. Maritorena,et al.  Ocean color observations and modeling for an optically complex site: Santa Barbara Channel, California, USA , 2007 .

[214]  Marcel Babin,et al.  Tracing the transport of colored dissolved organic matter in water masses of the Southern Beaufort Sea: relationship with hydrographic characteristics , 2011 .

[215]  Alexander Smirnov,et al.  Validation of SeaWiFS and MODIS aerosol products with globally distributed AERONET data , 2010 .

[216]  C. Mobley,et al.  Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization. , 1999, Applied optics.

[217]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[218]  Tommy D. Dickey,et al.  Optical determination of particulate abundance and production variations in the oligotrophic ocean , 1989 .

[219]  J. D. Ritchie,et al.  Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter , 2008 .

[220]  Jong-Kuk Choi,et al.  GOCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity , 2012 .

[221]  Trevor Platt,et al.  A two‐component model of phytoplankton absorption in the open ocean: Theory and applications , 2006 .

[222]  Thompson,et al.  Estimation of Particulate Organic Carbon in the Ocean from Satellite Remote Sensing , 2022 .

[223]  H. Claustre,et al.  Variability in the chlorophyll‐specific absorption coefficients of natural phytoplankton: Analysis and parameterization , 1995 .

[224]  Nicolas Hoepffner,et al.  Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter , 1993 .

[225]  A. Morel Optical properties of pure water and pure sea water , 1974 .

[226]  Michael S. Twardowski,et al.  Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution , 2004 .

[227]  E. Boss,et al.  Particulate concentration and seasonal dynamics in the mesopelagic ocean based on the backscattering coefficient measured with Biogeochemical‐Argo floats , 2017 .

[228]  M. Perry,et al.  Estimating primary production at depth from remote sensing. , 1996, Applied optics.

[229]  P. J. Werdell,et al.  An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation , 2005 .

[230]  M. Darecki,et al.  Laboratory measurements of remote sensing reflectance of selected phytoplankton species from the Baltic Sea , 2017 .

[231]  M. Friedrichs,et al.  Dissolved organic carbon fluxes in the Middle Atlantic Bight: An integrated approach based on satellite data and ocean model products , 2016, Journal of geophysical research. Biogeosciences.

[232]  Chuanmin Hu,et al.  MODIS-derived spatiotemporal water clarity patterns in optically shallow Florida Keys waters: A new approach to remove bottom contamination , 2013 .

[233]  Jun Zhao,et al.  Partitioning particulate absorption coefficient into contributions of phytoplankton and nonalgal particles: A case study in the northern South China Sea , 2008 .

[234]  Watson W. Gregg,et al.  Recent decadal trends in global phytoplankton composition , 2015 .

[235]  Lian Feng,et al.  Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past. , 2012, Applied optics.

[236]  D. Siegel,et al.  Concurrent high resolution bio‐optical and physical time series observations in the Sargasso Sea during the spring of 1987 , 1991 .

[237]  Scott F. Heron,et al.  Remote Sensing of Coral Reefs for Monitoring and Management: A Review , 2016, Remote. Sens..

[238]  M. Behrenfeld,et al.  Colored dissolved organic matter and its influence on the satellite‐based characterization of the ocean biosphere , 2005 .

[239]  Dariusz Stramski,et al.  Artifacts in measuring absorption spectra of phytoplankton collected on a filter , 1990 .

[240]  Giuseppe Zibordi,et al.  An inherent-optical-property-centered approach to correct the angular effects in water-leaving radiance. , 2011, Applied optics.

[241]  Collin S. Roesler Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique , 1998 .

[242]  Hoepffner Nicolas,et al.  Why Ocean Colour? The Societal Benefits of Ocean-Colour Technology , 2008 .

[243]  James W. Brown,et al.  A semianalytic radiance model of ocean color , 1988 .

[244]  Audrey Minghelli,et al.  Fusion of Sun-Synchronous and Geostationary Images for Coastal and Ocean Color Survey Application to OLCI (Sentinel-3) and FCI (MTG) , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[245]  George W Kattawar,et al.  Genesis and evolution of polarization of light in the ocean [invited]. , 2013, Applied optics.

[246]  P. Jeremy Werdell,et al.  Remote assessment of benthic substrate composition in shallow waters using multispectral reflectance , 2003 .

[247]  G. Walrafen,et al.  Temperature dependence of the low‐ and high‐frequency Raman scattering from liquid water , 1986 .

[248]  C. Binding,et al.  The optical properties of mineral suspended particles: A review and synthesis , 2006 .

[249]  F. Mélin,et al.  Uncertainty estimates of remote sensing reflectance derived from comparison of ocean color satellite data sets , 2016 .

[250]  K. S. Shifrin Physical optics of ocean water , 1988 .

[251]  Jianwei Wei,et al.  Hyperspectral absorption coefficient of “pure” seawater in the range of 350–550 nm inverted from remote sensing reflectance , 2015 .

[252]  H. Gordon,et al.  Radiance-irradiance inversion algorithm for estimating the absorption and backscattering coefficients of natural waters: vertically stratified water bodies. , 1998, Applied optics.

[253]  D. Stramski,et al.  A model for partitioning the light absorption coefficient of natural waters into phytoplankton, nonalgal particulate, and colored dissolved organic components: A case study for the Chesapeake Bay , 2015 .

[254]  Dariusz Stramski,et al.  Optical classification and characterization of marine particle assemblages within the western Arctic Ocean , 2016 .

[255]  M. Stramska Particulate organic carbon in the global ocean derived from SeaWiFS ocean color , 2009 .

[256]  Richard P. Stumpf,et al.  Agencies collaborate, develop a cyanobacteria assessment network , 2015 .

[257]  Jean Dubranna,et al.  Assessing phytoplankton community composition from hyperspectral measurements of phytoplankton absorption coefficient and remote-sensing reflectance in open-ocean environments , 2015 .

[258]  Hui Feng,et al.  Characterizing the uncertainties in spectral remote sensing reflectance for SeaWiFS and MODIS-Aqua based on global in situ matchup data sets , 2015 .

[259]  B. Nechad,et al.  Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea. , 2009, Optics express.

[260]  Timothy S. Moore,et al.  A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product , 2009 .

[261]  W Slade,et al.  Laboratory experiments for inter-comparison of three volume scattering meters to measure angular scattering properties of hydrosols. , 2016, Optics express.

[262]  L. Prieur,et al.  Analysis of variations in ocean color1 , 1977 .

[263]  Casey C. Moore,et al.  Scattering error correction of reflecting-tube absorption meters , 1994, Other Conferences.

[264]  Mark A. Moline,et al.  Inversion of spectral absorption in the optically complex coastal waters of the Mid-Atlantic Bight , 2004 .

[265]  Robert H. Stavn,et al.  New insight into particulate mineral and organic matter in coastal ocean waters through optical inversion , 2014 .

[266]  R. Bukata,et al.  Optical Properties and Remote Sensing of Inland and Coastal Waters , 1995 .

[267]  K. Voss,et al.  Raman scattering by pure water and seawater. , 1998, Applied optics.

[268]  D. G. Watts,et al.  Nonlinear Regression: Iterative Estimation and Linear Approximations , 2008 .

[269]  Dale A. Kiefer,et al.  A two‐component description of spectral absorption by marine particles , 1989 .

[270]  J Jiang,et al.  Medical image analysis with artificial neural networks , 2010, Comput. Medical Imaging Graph..

[271]  R. Bukata,et al.  Remote sensing reflectance and its relationship to optical properties of natural waters , 1996 .

[272]  L. Prieur,et al.  Continuous monitoring of surface optical properties across a geostrophic front: Biogeochemical inferences , 2000 .

[273]  A. Weidemann,et al.  Quantifying absorption by aquatic particles: A multiple scattering correction for glass-fiber filters , 1993 .

[274]  R. Arnone,et al.  Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. , 2002, Applied optics.

[275]  Scarla J. Weeks,et al.  A semianalytical ocean color inversion algorithm with explicit water column depth and substrate reflectance parameterization , 2015 .

[276]  I. Ioannou,et al.  Neural network approach to retrieve the inherent optical properties of the ocean from observations of MODIS. , 2011, Applied optics.

[277]  John R. Schott,et al.  On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing , 2014 .

[278]  David A. Siegel,et al.  Annual cycles of phytoplankton biomass in the subarctic Atlantic and Pacific Ocean , 2016 .

[279]  Sallie W. Chisholm,et al.  Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties , 1995 .

[280]  M. Kishino,et al.  Development of a Neural Network Algorithm for Retrieving Concentrations of Chlorophyll, Suspended Matter and Yellow Substance from Radiance Data of the Ocean Color and Temperature Scanner , 2004 .

[281]  C. Davis,et al.  Method to derive ocean absorption coefficients from remote-sensing reflectance. , 1996, Applied optics.

[282]  C. Gallegos,et al.  Partitioning spectral absorption in case 2 waters: discrimination of dissolved and particulate components. , 2002, Applied optics.

[283]  Robert J. W. Brewin,et al.  Obtaining Phytoplankton Diversity from Ocean Color: A Scientific Roadmap for Future Development , 2017, Front. Mar. Sci..

[284]  E. Boss,et al.  Spectral variability of the particulate backscattering ratio. , 2007, Optics express.

[285]  J R Zaneveld,et al.  Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity. , 1997, Applied optics.

[286]  T. Harmel,et al.  POLVSM (Polarized Volume Scattering Meter) instrument: an innovative device to measure the directional and polarized scattering properties of hydrosols. , 2014, Optics express.

[287]  L. Prieur,et al.  An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials1 , 1981 .

[288]  Menghua Wang,et al.  Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. , 1994, Applied optics.

[289]  S. Maritorena,et al.  Bio-optical properties of oceanic waters: A reappraisal , 2001 .

[290]  K. Voss,et al.  Spectral optimization for constituent retrieval in Case 2 waters II: Validation study in the Chesapeake Bay , 2009 .

[291]  Rüdiger Röttgers,et al.  Measurement of light absorption by aquatic particles: improvement of the quantitative filter technique by use of an integrating sphere approach. , 2012, Applied optics.

[292]  Annick Bricaud,et al.  Spatial variations in the chlorophyll‐specific absorption coefficients of phytoplankton and photosynthetically active pigments in the equatorial Pacific , 1997 .

[293]  R. Arnone,et al.  Uncertainties of Optical Parameters and Their Propagations in an Analytical Ocean Color Inversion Algorithm , 2010 .

[294]  M. DeGrandpre,et al.  Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: Terrestrial inputs and photooxidation , 1997 .

[295]  Dariusz Stramski,et al.  Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California , 2010 .

[296]  Steven E. Lohrenz,et al.  A novel theoretical approach to correct for pathlength amplification and variable sampling loading in measurements of particulate spectral absorption by the quantitative filter technique , 2000 .

[297]  E. Fry,et al.  Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. , 1997, Applied optics.

[298]  Dale A. Kiefer,et al.  Spectral absorption by marine particles of coastal waters of Baja California1 , 1982 .

[299]  E. Boss,et al.  Spectral beam attenuation coefficient retrieved from ocean color inversion , 2003 .

[300]  Kenneth S. Johnson,et al.  In situ ultraviolet spectrophotometry for high resolution and long-term monitoring of nitrate, bromide and bisulfide in the ocean , 2002 .

[301]  Trijntje Valerie Downes,et al.  Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables. , 2005, Applied optics.

[302]  John R. Moisan,et al.  An inverse modeling approach to estimating phytoplankton pigment concentrations from phytoplankton absorption spectra , 2011 .

[303]  S. Sathyendranath,et al.  Model of phytoplankton absorption based on three size classes. , 2011, Applied optics.

[304]  Fang Cao,et al.  Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins , 2018 .

[305]  J. Ronald V. Zaneveld,et al.  A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties , 1995 .

[306]  Shubha Sathyendranath,et al.  SeaUV and SeaUVC : Algorithms for the retrieval of UV/Visible diffuse attenuation coefficients from ocean color , 2007 .

[307]  Alexander Gilerson,et al.  Retrieval of Macro- and Micro-Physical Properties of Oceanic Hydrosols from Polarimetric Observations , 2016 .

[308]  Annick Bricaud,et al.  Analysis of in-situ spectral absorption meter data , 1992, Optics & Photonics.

[309]  Zaneveld,et al.  Effects of a Thin Layer of Reflectance and Remote-Sensing Reflectance , 1998 .

[310]  Christopher T. Jones,et al.  Deriving optical metrics of coastal phytoplankton biomass from ocean colour , 2012 .

[311]  J. Megonigal,et al.  Spatial gradients in dissolved carbon due to tidal marsh outwelling into a Chesapeake Bay estuary , 2011 .

[312]  David A. Siegel,et al.  Carbon‐based ocean productivity and phytoplankton physiology from space , 2005 .

[313]  H. Claustre,et al.  Optical properties of the “clearest” natural waters , 2007 .

[314]  D. Stramski,et al.  Estimation of the inherent optical properties of natural waters from the irradiance attenuation coefficient and reflectance in the presence of Raman scattering. , 2000, Applied optics.

[315]  C. Mobley Light and Water: Radiative Transfer in Natural Waters , 1994 .

[316]  M. Perry,et al.  In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance , 1995 .

[317]  Stanford B. Hooker,et al.  Algorithm development and validation of CDOM properties for estuarine and continental shelf waters along the northeastern U.S. coast , 2014 .

[318]  Andreas Colliander,et al.  Calibration and Validation , 2014, Encyclopedia of Remote Sensing.

[319]  H. Gordon,et al.  Spectral optimization for constituent retrieval in Case 2 waters I: Implementation and performance , 2009 .

[320]  N. Ogura,et al.  Nature of Ultra-violet Absorption of Sea Water , 1966, Nature.

[321]  Roland Doerffer,et al.  Neural network for emulation of an inverse model: operational derivation of Case II water properties from MERIS data , 1999 .

[322]  Stelvio Tassan,et al.  A METHOD USING CHEMICAL OXIDATION TO REMOVE LIGHT ABSORPTION BY PHYTOPLANKTON PIGMENTS , 1999 .

[323]  A. Bricaud,et al.  Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community. , 2001, Applied optics.

[324]  G. Zibordi,et al.  Performance and applicability of bio-optical algorithms in different European seas , 2012 .

[325]  C. Mobley,et al.  Hyperspectral remote sensing for shallow waters. I. A semianalytical model. , 1998, Applied optics.

[326]  Michael S Twardowski,et al.  Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range. , 2006, Applied optics.

[327]  P. J. Werdell,et al.  Discrimination of phytoplankton functional groups using an ocean reflectance inversion model. , 2014, Applied optics.

[328]  C. Mobley,et al.  An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters. , 2003, Optics express.

[329]  W. Verhoef,et al.  Deriving inherent optical properties and associated inversion-uncertainties in the Dutch Lakes. , 2009 .

[330]  M. Materazzi,et al.  Accuracy of remote sensing of water temperature by Raman spectroscopy. , 1999, Applied optics.

[331]  Richard L. Miller,et al.  Spectrum matching method for estimating the chlorophyll-a concentration, CDOM ratio, and backscatter fraction from remote sensing of ocean color , 2008 .

[332]  Vincent Vantrepotte,et al.  How optically diverse is the coastal ocean , 2015 .

[333]  E. Boss,et al.  Regional ocean-colour chlorophyll algorithms for the Red Sea , 2015 .

[334]  Hui Feng,et al.  A fuzzy logic classification scheme for selecting and blending satellite ocean color algorithms , 2001, IEEE Trans. Geosci. Remote. Sens..

[335]  Soo Chin Liew,et al.  Multiparameter retrieval of water optical properties from above-water remote-sensing reflectance using the simulated annealing algorithm. , 2007, Applied optics.

[336]  L. McKinna,et al.  Implementation of an analytical Raman scattering correction for satellite ocean-color processing. , 2016, Optics express.

[337]  Alexander Gilerson,et al.  Polarization impacts on the water-leaving radiance retrieval from above-water radiometric measurements. , 2012, Applied optics.

[338]  K. Ruddick,et al.  Model of remote-sensing reflectance including bidirectional effects for case 1 and case 2 waters. , 2005, Applied optics.

[339]  K. Stamnes,et al.  Comparison of numerical models for computing underwater light fields. , 1993, Applied optics.

[340]  Rüdiger Röttgers,et al.  Mass‐specific light absorption coefficients of natural aquatic particles in the near‐infrared spectral region , 2014 .

[341]  Dariusz Stramski,et al.  Phytoplankton class‐specific primary production in the world's oceans: Seasonal and interannual variability from satellite observations , 2010 .

[342]  F. Mélin,et al.  Ensemble uncertainty of inherent optical properties. , 2011, Optics express.

[343]  Chuanmin Hu,et al.  Multi-band spectral matching inversion algorithm to derive water column properties in optically shallow waters: An optimization of parameterization , 2018 .

[344]  D. Antoine,et al.  Oceanic primary production: 2. Estimation at global scale from satellite (Coastal Zone Color Scanner) chlorophyll , 1996 .

[345]  Hendrik Buiteveld,et al.  Optical properties of pure water , 1994, Other Conferences.

[346]  Dariusz Stramski,et al.  A model based on stacked-constraints approach for partitioning the light absorption coefficient of seawater into phytoplankton and non-phytoplankton components , 2013 .

[347]  Chuanmin Hu A novel ocean color index to detect floating algae in the global oceans , 2009 .

[348]  C. Dupouy,et al.  Sources of spatial variability in light absorbing components along an equatorial transect from 165°E to 150°W , 2003 .

[349]  Xiaodong Zhang,et al.  Scattering by pure seawater: effect of salinity. , 2009, Optics express.

[350]  Rüdiger Röttgers,et al.  Evaluation and Improvement of an Iterative Scattering Correction Scheme for in situ Absorption and Attenuation Measurements , 2013 .

[351]  H. Gordon,et al.  Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation , 2003 .

[352]  J J Stamnes,et al.  Impact of particulate oceanic composition on the radiance and polarization of underwater and backscattered light. , 2010, Optics express.

[353]  W. Balch,et al.  Light scattering by coccoliths detached from Emiliania huxleyi. , 2009, Applied optics.

[354]  Michael S. Twardowski,et al.  Measuring optical backscattering in water , 2013 .

[355]  H. Gordon,et al.  Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review , 1983 .

[356]  Kendall L. Carder,et al.  Properties of the Water Column and Bottom Derived from AVIRIS Data , 2001 .

[357]  K. Nordkvist,et al.  Estimates of particulate organic carbon over the euphotic depth from in situ measurements. Application to satellite data over the global ocean , 2010 .

[358]  Motoaki Kishino,et al.  Estimation of the spectral absorption coefficients of phytoplankton in the sea , 1985 .

[359]  G. Walrafen,et al.  Raman Spectral Studies of the Effects of Temperature on Water Structure , 1967 .

[360]  Hiroshi Murakami,et al.  Ocean color estimation by Himawari-8/AHI , 2016, Asia-Pacific Remote Sensing.

[361]  Bryan A. Franz,et al.  Ocean color measurements with the Operational Land Imager on Landsat-8: implementation and evaluation in SeaDAS , 2015 .

[362]  Roland Doerffer,et al.  Measurements of optical absorption by chromophoric dissolved organic matter using a point‐source integrating‐cavity absorption meter , 2007 .

[363]  W. Gardnera,et al.  Global POC concentrations from in-situ and satellite data , 2005 .

[364]  Wojciech M. Klonowski,et al.  Intercomparison of shallow water bathymetry, hydro‐optics, and benthos mapping techniques in Australian and Caribbean coastal environments , 2011 .

[365]  Dale A. Kiefer,et al.  A simple, steady state description of phytoplankton growth based on absorption cross section and quantum efficiency1 , 1983 .

[366]  K. Ruddick,et al.  Turbid wakes associated with offshore wind turbines observed with Landsat 8 , 2014 .

[367]  Peter Regner,et al.  The Ocean Colour Climate Change Initiative: III. A round-robin comparison on in-water bio-optical algorithms , 2015 .

[368]  S. Ha,et al.  Machine learning approaches to coastal water quality monitoring using GOCI satellite data , 2014 .

[369]  Dariusz Stramski,et al.  Variations in the optical properties of terrigenous mineral‐rich particulate matter suspended in seawater , 2007 .

[370]  B. Mitchell,et al.  Seasonal and interannual variability of particulate organic carbon within the Southern Ocean from satellite ocean color observations , 2010 .