Optimal Adaptive Ridgelet Schemes for Linear Transport Equations

In this paper we present a novel method for the numerical solution of linear transport equations, which is based on ridgelets. Such equations arise for instance in radiative transfer or in phase contrast imaging. Due to the fact that ridgelet systems are well adapted to the structure of linear transport operators, it can be shown that our scheme operates in optimal complexity, even if line singularities are present in the solution. The key to this is showing that the system matrix (with diagonal preconditioning) is uniformly well-conditioned and compressible -- the proof for the latter represents the main part of the paper. We conclude with some numerical experiments about $N$-term approximations and how they are recovered by the solver, as well as localisation of singularities in the ridgelet frame.

[1]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[2]  Massimo Fornasier,et al.  Adaptive frame methods for elliptic operator equations , 2007, Adv. Comput. Math..

[3]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[4]  P. Grohs,et al.  Sparse twisted tensor frame discretization of parametric transport operators , 2011 .

[5]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[6]  Emmanuel J. Candès Ridgelets and the Representation of Mutilated Sobolev Functions , 2001, SIAM J. Math. Anal..

[7]  Wang-Q Lim,et al.  Sparse multidimensional representation using shearlets , 2005, SPIE Optics + Photonics.

[8]  P. Grohs,et al.  Nonsmooth trust region algorithms for locally Lipschitz functions on Riemannian manifolds , 2016 .

[9]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[10]  Rob P. Stevenson,et al.  Adaptive Solution of Operator Equations Using Wavelet Frames , 2003, SIAM J. Numer. Anal..

[11]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[12]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[13]  P. Halmos,et al.  Bounded integral operators on L²spaces , 1978 .

[14]  M. Modest Radiative heat transfer , 1993 .

[15]  E. Candès,et al.  Continuous curvelet transform , 2003 .

[16]  Josef Dick,et al.  Multi-level higher order QMC Galerkin discretization for affine parametric operator equations , 2014, 1406.4432.

[17]  Helmut Harbrecht,et al.  Covariance regularity and H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document}-matrix approxi , 2014, Numerische Mathematik.

[18]  Gitta Kutyniok,et al.  Parabolic Molecules , 2012, Found. Comput. Math..

[19]  P. Grohs,et al.  Polar Spectral Scheme for the Spatially Homogeneous Boltzmann Equation , 2014 .

[20]  M. Nielsen,et al.  Frame Decomposition of Decomposition Spaces , 2007 .

[21]  Arnulf Jentzen,et al.  Weak convergence rates of spectral Galerkin approximations for SPDEs with nonlinear diffusion coefficients , 2014, The Annals of Applied Probability.

[22]  S. Li Concise Formulas for the Area and Volume of a Hyperspherical Cap , 2011 .

[23]  E. Candès,et al.  Continuous curvelet transform: II. Discretization and frames , 2005 .

[24]  C. Schwab Exponential Convergence of Simplicial h p-FEM for H1-Functions with Isotropic Singularities , 2015 .

[25]  Philipp Grohs,et al.  FFRT: A Fast Finite Ridgelet Transform for Radiative Transport , 2014, Multiscale Model. Simul..

[26]  P. Grohs Ridgelet-type Frame Decompositions for Sobolev Spaces related to Linear Transport , 2012 .

[27]  E. Candès,et al.  Continuous Curvelet Transform : I . Resolution of the Wavefront Set , 2003 .

[28]  Gitta Kutyniok,et al.  Shearlets: Multiscale Analysis for Multivariate Data , 2012 .

[29]  A. Paganini Approximate Shape Gradients for Interface Problems , 2015 .

[30]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..