Optimal Adaptive Ridgelet Schemes for Linear Transport Equations
暂无分享,去创建一个
[1] Laurent Demanet,et al. Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..
[2] Massimo Fornasier,et al. Adaptive frame methods for elliptic operator equations , 2007, Adv. Comput. Math..
[3] J. Guermond,et al. Theory and practice of finite elements , 2004 .
[4] P. Grohs,et al. Sparse twisted tensor frame discretization of parametric transport operators , 2011 .
[5] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[6] Emmanuel J. Candès. Ridgelets and the Representation of Mutilated Sobolev Functions , 2001, SIAM J. Math. Anal..
[7] Wang-Q Lim,et al. Sparse multidimensional representation using shearlets , 2005, SPIE Optics + Photonics.
[8] P. Grohs,et al. Nonsmooth trust region algorithms for locally Lipschitz functions on Riemannian manifolds , 2016 .
[9] Steven A. Orszag,et al. CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .
[10] Rob P. Stevenson,et al. Adaptive Solution of Operator Equations Using Wavelet Frames , 2003, SIAM J. Numer. Anal..
[11] Minh N. Do,et al. Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .
[12] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[13] P. Halmos,et al. Bounded integral operators on L²spaces , 1978 .
[14] M. Modest. Radiative heat transfer , 1993 .
[15] E. Candès,et al. Continuous curvelet transform , 2003 .
[16] Josef Dick,et al. Multi-level higher order QMC Galerkin discretization for affine parametric operator equations , 2014, 1406.4432.
[17] Helmut Harbrecht,et al. Covariance regularity and H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document}-matrix approxi , 2014, Numerische Mathematik.
[18] Gitta Kutyniok,et al. Parabolic Molecules , 2012, Found. Comput. Math..
[19] P. Grohs,et al. Polar Spectral Scheme for the Spatially Homogeneous Boltzmann Equation , 2014 .
[20] M. Nielsen,et al. Frame Decomposition of Decomposition Spaces , 2007 .
[21] Arnulf Jentzen,et al. Weak convergence rates of spectral Galerkin approximations for SPDEs with nonlinear diffusion coefficients , 2014, The Annals of Applied Probability.
[22] S. Li. Concise Formulas for the Area and Volume of a Hyperspherical Cap , 2011 .
[23] E. Candès,et al. Continuous curvelet transform: II. Discretization and frames , 2005 .
[24] C. Schwab. Exponential Convergence of Simplicial h p-FEM for H1-Functions with Isotropic Singularities , 2015 .
[25] Philipp Grohs,et al. FFRT: A Fast Finite Ridgelet Transform for Radiative Transport , 2014, Multiscale Model. Simul..
[26] P. Grohs. Ridgelet-type Frame Decompositions for Sobolev Spaces related to Linear Transport , 2012 .
[27] E. Candès,et al. Continuous Curvelet Transform : I . Resolution of the Wavefront Set , 2003 .
[28] Gitta Kutyniok,et al. Shearlets: Multiscale Analysis for Multivariate Data , 2012 .
[29] A. Paganini. Approximate Shape Gradients for Interface Problems , 2015 .
[30] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..