Extending Dijkstra's Algorithm to Maximize the Shortest Path by Node-Wise Limited Arc Interdiction

We consider the problem of computing shortest paths in a directed arc-weighted graph G = (V,A) in the presence of an adversary that can block (interdict), for each vertex v ∈ V, a given number p(v) of the arcs Aout(v) leaving v. We show that if all arc-weights are non-negative then the single-destination version of the problem can be solved by a natural extension of Dijkstra's algorithm in time $$O(|A|+|V|{\rm log}|V|+\Sigma_{\upsilon\in{V}\ \backslash \{t\}}(|A_{out}(\upsilon)|-p(\upsilon)){\rm log}(p(\upsilon)+1)).$$ Our result can be viewed as a polynomial algorithm for a special case of the network interdiction problem where the adversary's budget is node-wise limited. When the adversary can block a given number p of arcs distributed arbitrarily in the graph, the problem (p-most-vital-arcs problem) becomes NP-hard. This result is also closely related to so-called cyclic games. No polynomial algorithm computing the value of a cyclic game is known, though this problem belongs to both NP and coNP.

[1]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[2]  Cynthia A. Phillips,et al.  The network inhibition problem , 1993, STOC.

[3]  Raymond E. Miller,et al.  Complexity of Computer Computations , 1972 .

[4]  A. Karzanov,et al.  Cyclic games and an algorithm to find minimax cycle means in directed graphs , 1990 .

[5]  H. James Hoover,et al.  Limits to Parallel Computation: P-Completeness Theory , 1995 .

[6]  H. W. Corley,et al.  Most vital links and nodes in weighted networks , 1982, Oper. Res. Lett..

[7]  B. Golden A problem in network interdiction , 1978 .

[8]  Alexander V. Karzanov,et al.  Cyclical games with prohibitions , 1993, Math. Program..

[9]  W. C. Turner,et al.  Optimal interdiction policy for a flow network , 1971 .

[10]  Richard M. Karp,et al.  A characterization of the minimum cycle mean in a digraph , 1978, Discret. Math..

[11]  R. Kevin Wood,et al.  Deterministic network interdiction , 1993 .

[12]  Delbert Ray Fulkerson,et al.  Maximizing the minimum source-sink path subject to a budget constraint , 1977, Math. Program..

[13]  Alan W. McMasters,et al.  Optimal interdiction of a supply network , 1970 .

[14]  S. Vorobyov,et al.  Is Randomized Gurvich-Karzanov-Khachiyan's Algorithm for Parity Games Polynomial? , 2001 .

[15]  Samir Khuller,et al.  The complexity of finding most vital arcs and nodes , 1995 .

[16]  L. Goldschlager The monotone and planar circuit value problems are log space complete for P , 1977, SIGA.

[17]  Emmanuel Beffara,et al.  Adapting Gurvich-Karzanov-Khachiyan's Algorithm for Parity Games: Implementation and Experimentation , 2001 .

[18]  T. Gallai,et al.  Maximum-Minimum Sätze über Graphen , 1958 .

[19]  Uri Zwick,et al.  The Complexity of Mean Payoff Games on Graphs , 1996, Theor. Comput. Sci..

[20]  H. Moulin Extensions of two person zero sum games , 1976 .

[21]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[22]  Henrik Björklund,et al.  A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games , 2007, Discret. Appl. Math..

[23]  A. Ehrenfeucht,et al.  Positional strategies for mean payoff games , 1979 .

[24]  H. Moulin Prolongement des jeux à deux joueurs de somme nulle. Une théorie abstraite des duels , 1976 .

[25]  Alan Washburn,et al.  Two-Person Zero-Sum Games for Network Interdiction , 1995, Oper. Res..

[26]  R. Vohra,et al.  Finding the most vital arcs in a network , 1989 .

[27]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1987, JACM.

[28]  Henrik Björklund,et al.  A combinatorial strongly subexponential strategy improvement algorithm for mean payoff games , 2007, Discrete Applied Mathematics.

[29]  Nicolai N. Pisaruk,et al.  Mean Cost Cyclical Games , 1999, Math. Oper. Res..

[30]  R. Kevin Wood,et al.  Shortest‐path network interdiction , 2002, Networks.

[31]  A. K. Mittal,et al.  The k most vital arcs in the shortest path problem , 1990 .

[32]  Donald K. Wagner Disjoint (s, t)-cuts in a network , 1990, Networks.