Design of an unobtrusive wireless sensor network for nighttime falls detection

A significant portion of government health care funding is spent treating falls-related injuries among older adults. This cost is set to rise due to population aging in developed societies. Wearable sensors systems, often comprised of triaxial accelerometers and/or gyroscopes, have proven useful for real-time falls detection. However, a large percentage of falls occur at home and many of those happen at nighttime, when the person is unlikely to be wearing such an ambulatory monitoring device. It is envisaged that systems utilizing unobtrusive wireless sensors can be employed to survey the living space and identify unusual activity patterns which may indicate that a fall has happened at nighttime. In this study, a nighttime falls detection system designed for a single individual living at home, based on the use of passive infrared and pressure mat sensors, is explored. This paper describes both the sensor and system design, and investigates the feasibility of performing nighttime falls detection through the use of scripted scenarios using a single healthy test volunteer. In addition to normal movement activity, falls with unconsciousness, falls with repeated failed attempts to recover, and falls with successful recovery, are considered. By analyzing the location of sensor activity, periods of sensor inactivity, and unusual sensor activation patterns in uncommon locations, a sensitivity and specificity of 88.89% and 100%, respectively, are obtained (excluding falls followed by complete recovery). This demonstrates a proof-of-principle that nighttime falls detection might be achieved using a low complexity and completely unobtrusive wireless sensor network in the home.

[1]  Loong Fah Cheong,et al.  Fall Detection and Alert for Ageing-at-Home of Elderly , 2009, ICOST.

[2]  N. Noury A smart sensor for the remote follow up of activity and fall detection of the elderly , 2002, 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings (Cat. No.02EX578).

[3]  Marjorie Skubic,et al.  An acoustic fall detector system that uses sound height information to reduce the false alarm rate , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[4]  Cem Ersoy,et al.  Wireless sensor networks for healthcare: A survey , 2010, Comput. Networks.

[5]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[6]  Mark Hasegawa-Johnson,et al.  Acoustic fall detection using Gaussian mixture models and GMM supervectors , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[7]  Wen-Hsien Fang,et al.  A video‐based human fall detection system for smart homes , 2010 .

[8]  Youngbum Lee,et al.  Implementation of Accelerometer Sensor Module and Fall Detection Monitoring System based on Wireless Sensor Network , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[9]  Chia-Wen Lin,et al.  Automatic Fall Incident Detection in Compressed Video for Intelligent Homecare , 2007, 2007 16th International Conference on Computer Communications and Networks.

[10]  S. Cerutti,et al.  Barometric Pressure and Triaxial Accelerometry-Based Falls Event Detection , 2010, IEEE Transactions on Neural Systems and Rehabilitation Engineering.