A Stochastic Approach to the Gamma Function
暂无分享,去创建一个
[1] S. S. Wilks. CERTAIN GENERALIZATIONS IN THE ANALYSIS OF VARIANCE , 1932 .
[2] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[3] H. Robbins. A Remark on Stirling’s Formula , 1955 .
[4] M. Kac. Statistical Independence in Probability Analysis and Number Theory , 1959 .
[5] P. Davis. Leonhard Euler's Integral: A Historical Profile of the Gamma Function: In Memoriam: Milton Abramowitz , 1959 .
[6] E. Artin,et al. The Gamma Function , 1964 .
[7] William Feller,et al. A Direct Proof of Stirling's Formula , 1967 .
[8] H. Grauert,et al. Differential- und Integralrechnung II , 1968 .
[9] H. Schwetlick. G. M. Fichtenholz, Differential‐ und Integralrechnung III. (Hochschulbücher für Mathematik, Band 63.) 640 S. m. 145 Abb. Berlin 1967. Deutscher Verlag der Wissenschaften. Preis geb. 30,30 M , 1969 .
[10] P. Ghosh. On generalized unimodality , 1974 .
[11] W. F. Eberlein. On Euler's infinite product for the sine , 1977 .
[12] L. Bondesson. On infinite divisibility of powers of a gamma variable , 1978 .
[13] Bruce C. Berndt,et al. The Gamma Function and the Hurwitz Zeta-Function , 1985 .
[14] Pramod K. Pathak,et al. A Note on Easy Proofs of Stirling's Theorem , 1986 .
[15] Victor Namias. A Simple Derivation of Stirling's Asymptotic Series , 1986 .
[16] David A. Freedman,et al. An Elementary Proof of Stirling's Formula , 1986 .
[17] L. Gordon. Bounds for the Distribution of the Generalized Variance , 1989 .