A Stochastic Approach to the Gamma Function

[1]  S. S. Wilks CERTAIN GENERALIZATIONS IN THE ANALYSIS OF VARIANCE , 1932 .

[2]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[3]  H. Robbins A Remark on Stirling’s Formula , 1955 .

[4]  M. Kac Statistical Independence in Probability Analysis and Number Theory , 1959 .

[5]  P. Davis Leonhard Euler's Integral: A Historical Profile of the Gamma Function: In Memoriam: Milton Abramowitz , 1959 .

[6]  E. Artin,et al.  The Gamma Function , 1964 .

[7]  William Feller,et al.  A Direct Proof of Stirling's Formula , 1967 .

[8]  H. Grauert,et al.  Differential- und Integralrechnung II , 1968 .

[9]  H. Schwetlick G. M. Fichtenholz, Differential‐ und Integralrechnung III. (Hochschulbücher für Mathematik, Band 63.) 640 S. m. 145 Abb. Berlin 1967. Deutscher Verlag der Wissenschaften. Preis geb. 30,30 M , 1969 .

[10]  P. Ghosh On generalized unimodality , 1974 .

[11]  W. F. Eberlein On Euler's infinite product for the sine , 1977 .

[12]  L. Bondesson On infinite divisibility of powers of a gamma variable , 1978 .

[13]  Bruce C. Berndt,et al.  The Gamma Function and the Hurwitz Zeta-Function , 1985 .

[14]  Pramod K. Pathak,et al.  A Note on Easy Proofs of Stirling's Theorem , 1986 .

[15]  Victor Namias A Simple Derivation of Stirling's Asymptotic Series , 1986 .

[16]  David A. Freedman,et al.  An Elementary Proof of Stirling's Formula , 1986 .

[17]  L. Gordon Bounds for the Distribution of the Generalized Variance , 1989 .