Improved Face Detection Using Spatial Histogram Features

In this paper, we improve an object detection approach using spatial histogram features, by applying classifier ensemble. The spatial histogram features can preserve texture and shape information of an object, simultaneously. We train a hierarchical classifier by combining cascade histogram matching and the combination of Multi Layer Perceptrons. The cascade histogram matching is trained via automatically selected discriminative features. A forward sequential selection method is presented to construct uncorrelated and discriminative feature sets for combination of MLPs and RBFs. We evaluate the proposed approach on face objects. Experimental results show that the proposed approach is efficient and robust in object detection.

[1]  Antonio Torralba,et al.  Sharing features: efficient boosting procedures for multiclass object detection , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[2]  Yimin Wu,et al.  Feature selection for classifying high-dimensional numerical data , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[3]  Matti Pietikäinen,et al.  A discriminative feature space for detecting and recognizing faces , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[4]  Shimon Ullman,et al.  Object recognition with informative features and linear classification , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[5]  Tomaso A. Poggio,et al.  Example-Based Object Detection in Images by Components , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Harry Shum,et al.  Statistical Learning of Multi-view Face Detection , 2002, ECCV.

[7]  Theodoros Evgeniou,et al.  A TRAINABLE PEDESTRIAN DETECTION SYSTEM , 1998 .

[8]  Tomaso A. Poggio,et al.  Pedestrian detection using wavelet templates , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[10]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[11]  Wen Gao,et al.  Object detection using spatial histogram features , 2006, Image Vis. Comput..

[12]  Cordelia Schmid,et al.  Learning to Parse Pictures of People , 2002, ECCV.

[13]  Alan L. Yuille,et al.  Detecting and reading text in natural scenes , 2004, CVPR 2004.

[14]  Tommy W. S. Chow,et al.  Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information , 2005, IEEE Transactions on Neural Networks.

[15]  Christophe Garcia,et al.  Convolutional face finder: a neural architecture for fast and robust face detection , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  N. L. Johnson,et al.  Linear Statistical Inference and Its Applications , 1966 .

[17]  Jin Hyung Kim,et al.  Texture-Based Approach for Text Detection in Images Using Support Vector Machines and Continuously Adaptive Mean Shift Algorithm , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Bernt Schiele,et al.  Object Recognition Using Multidimensional Receptive Field Histograms , 1996, ECCV.

[19]  Takeo Kanade,et al.  A statistical method for 3D object detection applied to faces and cars , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).