A surface constrained all‐atom solvent model for effective simulations of polar solutions
暂无分享,去创建一个
[1] A. Warshel,et al. Microscopic examination of free-energy relationships for electron transfer in polar solvents , 1987 .
[2] J. Kirkwood. The Dielectric Polarization of Polar Liquids , 1939 .
[3] Brian E. Conway,et al. Modern Aspects of Electrochemistry , 1974 .
[4] Alan K. Soper,et al. A new determination of the structure of water at 25°C , 1986 .
[5] S. Adelman. Generalized Langevin theory for many‐body problems in chemical dynamics: Reactions in liquids , 1980 .
[6] R. Kubo. The fluctuation-dissipation theorem , 1966 .
[7] G. Uhlenbeck,et al. On the Theory of the Brownian Motion II , 1945 .
[8] H. Berendsen,et al. THERMODYNAMICS OF CAVITY FORMATION IN WATER - A MOLECULAR-DYNAMICS STUDY , 1982 .
[9] M. Born. Volumen und Hydratationswärme der Ionen , 1920 .
[10] S. Yip,et al. Molecular dynamics simulation of dielectric properties of water , 1987 .
[11] A. Maradudin,et al. Theory of dielectrics , 1949 .
[12] M. Neumann. The dielectric constant of water. Computer simulations with the MCY potential , 1985 .
[13] L. Onsager. Electric Moments of Molecules in Liquids , 1936 .
[14] J. Mccammon,et al. Molecular dynamics with stochastic boundary conditions , 1982 .
[15] G. Torrie,et al. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .
[16] R. Watts. Electric polarisation of water: Monte Carlo studies , 1981 .
[17] A. Warshel,et al. Calculations of electrostatic interactions in biological systems and in solutions , 1984, Quarterly Reviews of Biophysics.
[18] Arieh Warshel,et al. The extended Ewald method: A general treatment of long‐range electrostatic interactions in microscopic simulations , 1988 .
[19] R. H. Oppermann,et al. Properties of ordinary water-substance: by N. Ernest Dorsey. 673 pages, illustrations, tables, 16 × 24 cms. New York, Reinhold Publishing Corporation, 1940.Price $15.00. , 1940 .
[20] Kazimierz Krynicki,et al. Pressure and temperature dependence of self-diffusion in water , 1978 .
[21] Arieh Warshel,et al. Dynamics of reactions in polar solvents. Semiclassical trajectory studies of electron-transfer and proton-transfer reactions , 1982 .
[22] G. Mason. Radial Distribution Functions from Small Packings of Spheres , 1968, Nature.
[23] J. Kirkwood,et al. Theory of Solutions of Molecules Containing Widely Separated Charges with Special Application to Zwitterions , 1934 .
[24] A. Warshel. A microscopic model for calculations of chemical processes in aqueous solutions , 1978 .
[25] A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.
[26] T. L. Hill,et al. An Introduction to Statistical Thermodynamics , 1960 .
[27] Alan C. Belch,et al. Molecular dynamics simulations of tips2 water restricted by a spherical hydrophobic boundary , 1985 .
[28] A. Warshel,et al. Polarization constraints in molecular dynamics simulation of aqueous solutions: The surface constraint all atom solvent (SCAAS) model , 1985 .
[29] A. D. Buckingham,et al. A theory of the dielectric polarization of polar substances , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[30] S. Creighton,et al. Simulation of free energy relationships and dynamics of SN2 reactions in aqueous solution , 1988 .
[31] A. Warshel,et al. Simulation of the dynamics of electron transfer reactions in polar solvents: Semiclassical trajectories and dispersed polaron approaches , 1986 .
[32] A. Warshel,et al. Free energy of charges in solvated proteins: microscopic calculations using a reversible charging process. , 1986, Biochemistry.
[33] M. Karplus,et al. Deformable stochastic boundaries in molecular dynamics , 1983 .