Abdominal MR imaging at 3T.

[1]  S. Schoenberg,et al.  The Feasibility of Spatial High-Resolution Magnetic Resonance Angiography (MRA) of the Renal Arteries at 3.0 T , 2005, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[2]  R. Fimmers,et al.  Coronary MR angiography at 3.0 T versus that at 1.5 T: initial results in patients suspected of having coronary artery disease. , 2005, Radiology.

[3]  F. Shellock,et al.  Detachable coil for cerebral aneurysms: in vitro evaluation of magnetic field interactions, heating, and artifacts at 3T. , 2005, AJNR. American journal of neuroradiology.

[4]  Michael B. Smith,et al.  Central brightening due to constructive interference with, without, and despite dielectric resonance , 2005, Journal of magnetic resonance imaging : JMRI.

[5]  Jean A. Tkach,et al.  Neurostimulation systems: Assessment of magnetic field interactions associated with 1.5‐ and 3‐Tesla MR systems , 2005, Journal of magnetic resonance imaging : JMRI.

[6]  F. Shellock,et al.  Drug eluting coronary stent: in vitro evaluation of magnet resonance safety at 3 Tesla. , 2005, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[7]  3.0-T high-field magnetic resonance imaging of the female pelvis: preliminary experiences , 2005, European Radiology.

[8]  J. Gieseke,et al.  Lung MRI at 3.0 T: a comparison of helical CT and high-field MRI in the detection of diffuse lung disease , 2005, European Radiology.

[9]  B. Nicolas Bloch,et al.  3 Tesla magnetic resonance imaging of the prostate with combined pelvic phased-array and endorectal coils; Initial experience(1). , 2004, Academic radiology.

[10]  Jacob Sosna,et al.  MR imaging of the prostate at 3 Tesla: comparison of an external phased-array coil to imaging with an endorectal coil at 1.5 Tesla. , 2004, Academic radiology.

[11]  H. Urbach,et al.  Hochfeld-Magnetresonanztomographie: Magnetische Anziehungs- und Rotationskräfte auf metallische Implantate bei 3,0 T* , 2004 .

[12]  N. Rofsky,et al.  MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. , 2004, Radiology.

[13]  K. Scheffler,et al.  Calculation of flip angles for echo trains with predefined amplitudes with the extended phase graph (EPG)‐algorithm: Principles and applications to hyperecho and TRAPS sequences , 2004, Magnetic resonance in medicine.

[14]  R. Lenkinski,et al.  Breathhold abdominal and thoracic proton MR spectroscopy at 3T , 2003, Magnetic resonance in medicine.

[15]  Jacob Sosna,et al.  Determinations of prostate volume at 3-Tesla using an external phased array coil: comparison to pathologic specimens. , 2003, Academic radiology.

[16]  Robert V Mulkern,et al.  Double inversion black‐blood fast spin‐echo imaging of the human heart: A comparison between 1.5T and 3.0T , 2003, Journal of magnetic resonance imaging : JMRI.

[17]  Jean A. Tkach,et al.  Cardiac pacemakers, ICDs, and loop recorder: evaluation of translational attraction using conventional ("long-bore") and "short-bore" 1.5- and 3.0-Tesla MR systems. , 2003, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[18]  Frank G Shellock,et al.  Biomedical implants and devices: Assessment of magnetic field interactions with a 3.0‐Tesla MR system , 2002, Journal of magnetic resonance imaging : JMRI.

[19]  Yu-Chung N. Cheng,et al.  Magnetic Resonance Imaging: Physical Principles and Sequence Design , 1999 .

[20]  J. Lewin,et al.  Needle localization in MR-guided biopsy and aspiration: effects of field strength, sequence design, and magnetic field orientation. , 1996, AJR. American journal of roentgenology.

[21]  Allen D. Elster,et al.  Questions & answers in magnetic resonance imaging , 1994 .

[22]  W. Edelstein,et al.  The intrinsic signal‐to‐noise ratio in NMR imaging , 1986, Magnetic resonance in medicine.

[23]  T. Foster,et al.  A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. , 1984, Medical physics.