A New CYP3A5*3 and CYP3A4*22 Cluster Influencing Tacrolimus Target Concentrations: A Population Approach

[1]  Tacrolimus , 2019, Reactions Weekly.

[2]  H. Colom,et al.  The combination of CYP3A4*22 and CYP3A5*3 single-nucleotide polymorphisms determines tacrolimus dose requirement after kidney transplantation , 2017, Pharmacogenetics and genomics.

[3]  A. Jardine,et al.  High Intrapatient Tacrolimus Variability Is Associated With Worse Outcomes in Renal Transplantation Using a Low-Dose Tacrolimus Immunosuppressive Regime , 2017, Transplantation.

[4]  W. Weimar,et al.  A high intrapatient variability in tacrolimus exposure is associated with poor long‐term outcome of kidney transplantation , 2016, Transplant international : official journal of the European Society for Organ Transplantation.

[5]  D. Lambrechts,et al.  Effect of ABCB1 diplotype on tacrolimus disposition in renal recipients depends on CYP3A5 and CYP3A4 genotype , 2016, The Pharmacogenomics Journal.

[6]  A. Åsberg,et al.  Improved Tacrolimus Target Concentration Achievement Using Computerized Dosing in Renal Transplant Recipients—A Prospective, Randomized Study , 2015, Transplantation.

[7]  I. Trocóniz,et al.  Population pharmacokinetic analysis of tacrolimus in Mexican paediatric renal transplant patients: role of CYP3A5 genotype and formulation. , 2015, British journal of clinical pharmacology.

[8]  D. Hesselink,et al.  Dosing algorithms for initiation of immunosuppressive drugs in solid organ transplant recipients , 2015, Expert opinion on drug metabolism & toxicology.

[9]  H. Colom,et al.  Development of a Population PK Model of Tacrolimus for Adaptive Dosage Control in Stable Kidney Transplant Patients , 2015, Therapeutic drug monitoring.

[10]  A. Israni,et al.  OPTN/SRTR 2013 Annual Data Report: Kidney , 2015, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[11]  D. Kuypers,et al.  Combined effects of CYP3A5*1, POR*28, and CYP3A4*22 single nucleotide polymorphisms on early concentration-controlled tacrolimus exposure in de-novo renal recipients , 2014, Pharmacogenetics and genomics.

[12]  D. Hesselink,et al.  Clinical implementation of pharmacogenetics in kidney transplantation: calcineurin inhibitors in the starting blocks. , 2014, British journal of clinical pharmacology.

[13]  J. D. de Fijter,et al.  Effect of CYP3A4*22, CYP3A5*3, and CYP3A Combined Genotypes on Cyclosporine, Everolimus, and Tacrolimus Pharmacokinetics in Renal Transplantation , 2014, CPT: pharmacometrics & systems pharmacology.

[14]  D. Hesselink,et al.  The Role of Pharmacogenetics in the Disposition of and Response to Tacrolimus in Solid Organ Transplantation , 2014, Clinical Pharmacokinetics.

[15]  C. Polidori,et al.  Pharmacogenetic considerations for optimizing tacrolimus dosing in liver and kidney transplant patients. , 2013, World journal of gastroenterology.

[16]  R. Jelliffe,et al.  Inclusion of CYP3A5 genotyping in a nonparametric population model improves dosing of tacrolimus early after transplantation , 2013, Transplant international : official journal of the European Society for Organ Transplantation.

[17]  V. Haufroid,et al.  Impact of CYP3A4*22 Allele on Tacrolimus Pharmacokinetics in Early Period After Renal Transplantation: Toward Updated Genotype-Based Dosage Guidelines , 2013, Therapeutic drug monitoring.

[18]  A. Åsberg,et al.  Importance of hematocrit for a tacrolimus target concentration strategy , 2013, European Journal of Clinical Pharmacology.

[19]  J. Barrett,et al.  Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis , 2013, Pharmacogenetics and genomics.

[20]  A. Israni,et al.  OPTN/SRTR 2011 Annual Data Report: Kidney , 2013, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[21]  A. Israni,et al.  Lower Calcineurin Inhibitor Doses in Older Compared to Younger Kidney Transplant Recipients Yield Similar Troughs , 2012, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[22]  A. V. van Zuilen,et al.  Drug-drug interactions between antiretroviral and immunosuppressive agents in HIV-infected patients after solid organ transplantation: a review. , 2012, AIDS patient care and STDs.

[23]  V. Haufroid,et al.  A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. , 2011, Clinical chemistry.

[24]  V. Haufroid,et al.  Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors' dose requirements and trough blood levels in stable renal transplant patients. , 2011, Pharmacogenomics.

[25]  P. Marquet,et al.  Population pharmacokinetic model and Bayesian estimator for two tacrolimus formulations--twice daily Prograf and once daily Advagraf. , 2011, British journal of clinical pharmacology.

[26]  Andrew C. Hooker,et al.  Prediction-Corrected Visual Predictive Checks for Diagnosing Nonlinear Mixed-Effects Models , 2011, The AAPS Journal.

[27]  M. Loriot,et al.  Optimization of Initial Tacrolimus Dose Using Pharmacogenetic Testing , 2010, Clinical pharmacology and therapeutics.

[28]  V. Haufroid,et al.  CYP3A5 and ABCB1 polymorphisms influence tacrolimus concentrations in peripheral blood mononuclear cells after renal transplantation. , 2010, Pharmacogenomics.

[29]  V. Haufroid,et al.  Time of Drug Administration, CYP3A5 and ABCB1 Genotypes, and Analytical Method Influence Tacrolimus Pharmacokinetics: A Population Pharmacokinetic Study , 2009, Therapeutic drug monitoring.

[30]  R. Savic,et al.  Importance of Shrinkage in Empirical Bayes Estimates for Diagnostics: Problems and Solutions , 2009, The AAPS Journal.

[31]  F. Oppenheimer,et al.  The pharmacokinetics of mycophenolate mofetil in renal transplant recipients receiving standard-dose or low-dose cyclosporine, low-dose tacrolimus or low-dose sirolimus: the Symphony pharmacokinetic substudy. , 2009, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[32]  V. Haufroid,et al.  Opportunities to Optimize Tacrolimus Therapy in Solid Organ Transplantation: Report of the European Consensus Conference , 2009, Therapeutic drug monitoring.

[33]  P. Wallemacq,et al.  A Fast Ultra-Performance Liquid Chromatography Method for Simultaneous Quantification of Mycophenolic Acid and Its Phenol- and Acyl-Glucuronides in Human Plasma , 2009, Therapeutic drug monitoring.

[34]  V. Haufroid,et al.  1199G>A and 2677G>T/A polymorphisms of ABCB1 independently affect tacrolimus concentration in hepatic tissue after liver transplantation , 2007, Pharmacogenetics and genomics.

[35]  Mats O. Karlsson,et al.  Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies , 2007, Journal of Pharmacokinetics and Pharmacodynamics.

[36]  U. Kunzendorf,et al.  CYP3A5 Genotype Markedly Influences the Pharmacokinetics of Tacrolimus and Sirolimus in Kidney Transplant Recipients , 2007, Clinical pharmacology and therapeutics.

[37]  E. Niclas Jonsson,et al.  Erratum to "PsN-Toolkit - A collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM" [Comput. Methods Prog. Biomedicine 79 (2005) 241-257] , 2005, Comput. Methods Programs Biomed..

[38]  Zhi-Hong Liu,et al.  Influence of CYP3A5 and MDR1 polymorphisms on tacrolimus concentration in the early stage after renal transplantation , 2005, Clinical transplantation.

[39]  E. Niclas Jonsson,et al.  PsN-Toolkit - A collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM , 2005, Comput. Methods Programs Biomed..

[40]  D. Holt,et al.  Tacrolimus Pharmacogenetics: The CYP3A5*1 Allele Predicts Low Dose-Normalized Tacrolimus Blood Concentrations in Whites and South Asians , 2005, Transplantation.

[41]  A. McLachlan,et al.  Factors affecting variability in distribution of tacrolimus in liver transplant recipients. , 2003, British journal of clinical pharmacology.

[42]  P. Beaune,et al.  Impact of cytochrome P450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients12 , 2003, Transplantation.

[43]  W. Weimar,et al.  Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR‐1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus , 2003, Clinical pharmacology and therapeutics.

[44]  C. Staatz,et al.  Population pharmacokinetics of tacrolimus in adult kidney transplant recipients , 2002, Clinical pharmacology and therapeutics.

[45]  L. Sheiner,et al.  Evaluating Pharmacokinetic/Pharmacodynamic Models Using the Posterior Predictive Check , 2001, Journal of Pharmacokinetics and Pharmacodynamics.

[46]  I. Bekersky,et al.  Effect of Low‐ and High‐Fat Meals on Tacrolimus Absorption following 5 mg Single Oral Doses to Healthy Human Subjects , 2001, Journal of clinical pharmacology.

[47]  U. Christians,et al.  The pharmacokinetics and metabolic disposition of tacrolimus: A comparison across ethnic groups , 2001, Clinical pharmacology and therapeutics.

[48]  Mats O. Karlsson,et al.  Automated Covariate Model Building Within NONMEM , 1998, Pharmaceutical Research.

[49]  N. Undre,et al.  Pharmacokinetics of tacrolimus (FK506) in paediatric liver transplant recipients , 1998, European Journal of Drug Metabolism and Pharmacokinetics.

[50]  T. Starzl,et al.  Clinical Pharmacokinetics of Tacrolimus , 1995, Clinical pharmacokinetics.

[51]  M. O. Karlsson,et al.  The importance of modeling interoccasion variability in population pharmacokinetic analyses , 1993, Journal of Pharmacokinetics and Biopharmaceutics.

[52]  S. Todo,et al.  Effect of hepatic dysfunction and T tube clamping on FK 506 pharmacokinetics and trough concentrations. , 1990, Transplantation proceedings.

[53]  Lewis B. Sheiner,et al.  Some suggestions for measuring predictive performance , 1981, Journal of Pharmacokinetics and Biopharmaceutics.

[54]  Kiyoshi Yamaoka,et al.  Application of Akaike's information criterion (AIC) in the evaluation of linear pharmacokinetic equations , 1978, Journal of Pharmacokinetics and Biopharmaceutics.

[55]  V. Haufroid,et al.  CYP3A4*22: promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. , 2013, Pharmacogenomics.

[56]  A. Prémaud,et al.  Tacrolimus Population Pharmacokinetic-Pharmacogenetic Analysis and Bayesian Estimation in Renal Transplant Recipients , 2009, Clinical pharmacokinetics.

[57]  C. Staatz,et al.  Clinical Pharmacokinetics and Pharmacodynamics of Mycophenolate in Solid Organ Transplant Recipients , 2007, Clinical pharmacokinetics.

[58]  C. Staatz,et al.  Clinical Pharmacokinetics and Pharmacodynamics of Tacrolimus in Solid Organ Transplantation , 2004, Clinical pharmacokinetics.